Exercise 1 Charter-Penrose Diagram for Minkowski space

Consider four-dimensional Minkowski space in polar coordinates,

$$
\begin{align*}
& d s^{2}=-d t^{2}+d r^{2}+r^{2} d \Omega_{2}^{2} \tag{1}\\
& d \Omega_{2}^{2}=\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{2}
\end{align*}
$$

a) Show that the coordinate change, $(r+t)=\tan (R+T)$ and $(r-t)=\tan (R-T)$ gives the metric,

$$
\begin{equation*}
d s^{2}=f(T, R)\left(-d T^{2}+d R^{2}+\sin ^{2}(R) d \Omega_{2}^{2}\right) \tag{3}
\end{equation*}
$$

and determine the function $f(T, R)$.
b) Give the coordinate ranges for the time coordinate T and the radial coordinate R for which Minkowski space is covered once in the new coordinates.
c) Draw the Carter-Penrose diagram and identify $i^{ \pm}, i^{0}, \mathcal{I}^{ \pm}$.
d) Give the paramtrization of the following geodesics through the origin $R=0$:

- light rays
- two distinct time-like geodesics
- two distinct space-like geodesics

Draw the geodesics qualitatively in the Penrose diagram.

Exercise 2 Maxwell-Einstein equations

The aim of this exercise is to derive the solution of the Einstein-Maxwell equations of a static point-like charge. Symmetry considerations allow to consider the following ansatz for metric and electromagnetic potential,

$$
\begin{align*}
& d s^{2}=-f(r) d t^{2}+f(r)^{-1} d r^{2}+r^{2} d \Omega_{2}^{2} \\
& A_{t}=\phi(r), \quad A_{r}=A_{\theta}=A_{\phi}=0 \tag{4}
\end{align*}
$$

a) Show that the current of a point-like charge Q at the origin of spherical coordinates is given by $j^{\mu}(r)=\{Q \delta(r), 0,0,0\}$. (Here we use the definition of the $\delta(r)$ distribution to be $\int d \theta d \phi d r r^{2} \sin (\theta) \delta(r) f(\vec{x})=f(\overrightarrow{0})$.)
b) Show that the inhomogenous Maxwell equations for a generic metric tensor are given by,

$$
\begin{equation*}
\nabla_{\mu} F^{\mu \nu}=-4 \pi j^{\nu} \quad \rightarrow \quad \frac{1}{\sqrt{g}} \partial_{\mu}\left(\sqrt{g} F^{\mu \nu}\right)=-4 \pi j^{\nu} \tag{5}
\end{equation*}
$$

c) Solve the Maxwell equations for the ansatz (4) for $r>0$ up to the integration constant. Later fix the integration constant by comparing the volume integrals of the current,

$$
\begin{equation*}
\int_{R^{3}, t=t_{0}}\left(\frac{1}{3!} \sqrt{g} \varepsilon_{\nu \mu_{1} \mu_{2} \mu_{3}} d x^{\mu_{1}} d x^{\mu_{2}} d x^{\mu_{3}}\right) j^{\nu} \tag{6}
\end{equation*}
$$

and the left-hand side of the field equations.

Discussion 1 Reissner Nordstrøm metric

The Reissner Nordstrøm metric solves the Einstein-Maxwell equations. To show this one starts from a spherically symmetric ansatz and fixes the remaining functions using the Einstein-Maxwell equations.

The ansatz for the metric and the electromagnetic potential is given by,

$$
\begin{align*}
& d s^{2}=-A(r) d t^{2}+B(r) d r^{2}+r^{2} d \Omega_{2}^{2} \tag{7}\\
& A_{t}=\phi(r), \quad A_{r}=A_{\theta}=A_{\phi}=0 \tag{8}
\end{align*}
$$

The Einstein equations are given by,

$$
\begin{equation*}
R_{\mu \nu}=8 \pi G_{N}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T_{\rho}^{\rho}\right) . \tag{9}
\end{equation*}
$$

The energy-momentum tensor and the non-vanishing components of the Ricci tensor are given by,

$$
\begin{align*}
& T_{\mu \nu}=\frac{1}{4 \pi}\left(F_{\mu \rho} F_{\nu}^{\rho}-\frac{1}{4} g_{\mu \nu} F_{\rho \sigma} F^{\rho \sigma}\right) \tag{10}\\
& R_{t t}=\frac{A^{\prime \prime}}{2 B}-\frac{A^{\prime}}{4 B}\left(\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right)+\frac{A^{\prime}}{r B} \tag{11}\\
& R_{r r}=-\frac{A^{\prime \prime}}{2 A}+\frac{A^{\prime}}{4 A}\left(\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right)+\frac{B^{\prime}}{r B}, \tag{12}\\
& R_{\theta \theta}=1-\frac{1}{B}-\frac{r}{2 B}\left(\frac{A^{\prime}}{A}-\frac{B^{\prime}}{B}\right), \tag{13}\\
& R_{\phi \phi}=\sin ^{2}(\theta) R_{\theta \theta} . \tag{14}
\end{align*}
$$

The aim of this exercise will be to find the solutions of the field equations,

$$
\begin{equation*}
A=B^{-1}=1-\frac{m}{r}+\frac{q^{2}}{r^{2}}, \quad \phi=-\frac{Q}{r}, \quad q^{2}=G_{N} Q^{2} . \tag{15}
\end{equation*}
$$

a) Compute the field strength tensor $F_{\mu \nu}$.
b) Compute the energy-momentum tensor of the electromagnetic field.
c) Show that the energy-momentum tensor is trace less $T_{\mu}^{\mu}=0$.
d) Use the explicit form of $T_{\mu \nu}$ eqns. (11) and (12) to show that $B R_{t t}+A R_{r r}=0$ and that this implies $A(r)=B(r)^{-1}=: f(r)$.
e) The solutions of the inhomogenous Maxwell equations is given by $\phi(r)=-Q / r$. Use this in combination with the $R_{\theta \theta}$ Einstein equations to show that $f(r)$ is given by,

$$
\begin{equation*}
f(r)=1-\frac{m}{r}+\frac{q^{2}}{r^{2}} . \tag{16}
\end{equation*}
$$

