
Exercises to General Relativity II SS 2014

Exercise 3 Kruskal Szekeres coordinates.

Given is the four-dimensional metric,

ds2 =
32m3

r
e−r/2m(−dT 2 + dX2) + r(X,T )2 dΩ2

2 , (1)

r(T,X) from X2 − T 2 =
( r

2m
− 1
)
er/2m . (2)

a) Show that the coordinate transformation of the above metric give the Schwarzschild
metric in each of the four regions a,b,c and d,

regions a/b: r > 2m, (3)

T =
( r

2m
− 1
)1/2

er/4m sinh (t/4m) , (4)

X =
( r

2m
− 1
)1/2

er/4m cosh (t/4m) · (±1) , (5)

regions c/d: 0 < r < 2m, (6)

X =
(

1− r

2m

)1/2
er/4m sinh (t/4m) , (7)

T =
(

1− r

2m

)1/2
er/4m cosh (t/4m) · (±1) . (8)

(9)

b) Draw the r and t coordinate lines in (X,T) coordinate space and show that two
copies of the (r,t) coordinate patch (with r > 0 and t ∈ R) have to be used to cover
(X,T)-coordinates once.

c) Arrange the regions a,b,c and d in order to obtain a the geodesically complete space-
time that solves the vacuum Einstein equations for r > 0.

Exercise 4 Basic properties of sigma models.

Consider the σ-model,

S = − 1

4πα′

∫
dσdτ

√
ggmn(σ, τ)∂mX

ν(σ, τ)∂nX
ν(σ, τ)Gµν(X) . (10)

a) Derive the field equation of the world-sheet metric gmn.

b) Assume a flat embedding space Gµν(X) = ηµν and derive the conserved currents and
charges associated to translations in target space,

Xµ(σ, τ)→ Xµ(σ, τ) + εµ . (11)

Assume that the space coordinate σ is periodic; σ ∈ [0, 2π) and Xµ(σ, τ) = Xµ(σ +
2π, τ), gmn(σ, τ) = gmn(σ + 2π, τ).



c) Assume a flat embedding space Gµν(X) = ηµν and derive the field equations for the
fields Xµ(σ, τ). Verify that the charges are in fact conserved.

Discussion 3 Field equations for a scalar field.

Consider a scalar field φ in the Scharzschild geometry,

ds2 = −f(r)dt2 + f(r)−1dr2 + r2 dΩ2
2 , f(r) =

(
1− 2m

r

)
, (12)

with

S = −1

2

∫
dx4
√
g(gµν∂µφ∂νφ) . (13)

a) Give the field equations for the scalar field φ(t, r, θ, ϕ).

b) Work out the field equation for hl,m(t, r) for the ansatz,

φ(t, r, θ, ϕ) = hlm(t, r)Ylm(θ, ϕ) , (14)

using,

1

sin (θ)
∂θ (sin (θ)∂θYlm(θ, ϕ)) +

1

sin2 (θ)
∂2ϕYlm(θ, ϕ) = −l(l + 1)Ylm(θ, ϕ) .

c) Transform the differential equation to tortoise coordinates with ∂r = dr∗/dr∂r∗ and
dr∗/dr = f−1.

d) Show that the redefinition of the fields hlm(t, r∗) = ψlm(t, r∗)/r leads to the field
equation,

(∂2t − ∂2r∗)ψlm(t, r∗) + Vl(r
∗)ψlm(t, r∗) , Vl(r

∗) = f(r)

(
l(l + 1)

r2
+

2m

r3

)
. (15)

e) Discuss the solutions to the above field equation in the asymtotic regions near the
horizon and near spatial infinity.

Discussion 4 Near horizon geometry of Black Holes.

Consider the Schwarzschild metric and the Reissner Nordstrøm metric,

ds2 = −f(r)dt2 + f(r)−1dr2 + r2 dΩ2
2 , (16)

for which f(r) takes the form,

f(r) = 1− 2mS

r
, or f(r) = 1− 2mRN

r
+
q2

r2
, (17)

respectively.



a) Identify the locations of the event horizon(s). (Consider only the parameter ranges
with mS > 0 and mRN > 0.)

b) Consider the hypersurfaces of the singularities r → 0. Are the singularities spacelike
or timelike?

c) For which cases can we speak of naked singularities?

d) Consider the near-horizon geometries; which of the two cases can be found when we
expand the metric close to the location of the apparent horizon,

Rindler-like: ds2 = −κ2ρ2dt2 + dρ2 +R2 dΩ2
2 , (18)

AdS2 × S2 : ds2 = R2 (−dt2 + dy2)

y2
+R2 dΩ2

2 , (19)

and determine the parameters κ and R.


