Exercise 3 Kruskal Szekeres coordinates.

Given is the four-dimensional metric,

$$
\begin{align*}
& d s^{2}=\frac{32 m^{3}}{r} e^{-r / 2 m}\left(-d T^{2}+d X^{2}\right)+r(X, T)^{2} d \Omega_{2}^{2}, \tag{1}\\
& r(T, X) \quad \text { from } \quad X^{2}-T^{2}=\left(\frac{r}{2 m}-1\right) e^{r / 2 m} \tag{2}
\end{align*}
$$

a) Show that the coordinate transformation of the above metric give the Schwarzschild metric in each of the four regions a,b,c and d,

$$
\begin{array}{ll}
\text { regions a/b: } & r>2 m, \\
& T=\left(\frac{r}{2 m}-1\right)^{1 / 2} e^{r / 4 m} \sinh (t / 4 m) \\
& X=\left(\frac{r}{2 m}-1\right)^{1 / 2} e^{r / 4 m} \cosh (t / 4 m) \cdot(\pm 1), \\
\text { regions c/d: } \quad 0<r<2 m, \\
& X=\left(1-\frac{r}{2 m}\right)^{1 / 2} e^{r / 4 m} \sinh (t / 4 m) \\
& T=\left(1-\frac{r}{2 m}\right)^{1 / 2} e^{r / 4 m} \cosh (t / 4 m) \cdot(\pm 1) \tag{8}
\end{array}
$$

b) Draw the r and t coordinate lines in (X, T) coordinate space and show that two copies of the (r,t) coordinate patch (with $r>0$ and $t \in R$) have to be used to cover (X,T)-coordinates once.
c) Arrange the regions a,b,c and din order to obtain a the geodesically complete spacetime that solves the vacuum Einstein equations for $r>0$.

Exercise 4 Basic properties of sigma models.
Consider the σ-model,

$$
\begin{equation*}
S=-\frac{1}{4 \pi \alpha^{\prime}} \int d \sigma d \tau \sqrt{g} g^{m n}(\sigma, \tau) \partial_{m} X^{\nu}(\sigma, \tau) \partial_{n} X^{\nu}(\sigma, \tau) G_{\mu \nu}(X) \tag{10}
\end{equation*}
$$

a) Derive the field equation of the world-sheet metric $g_{m n}$.
b) Assume a flat embedding space $G_{\mu \nu}(X)=\eta_{\mu \nu}$ and derive the conserved currents and charges associated to translations in target space,

$$
\begin{equation*}
X^{\mu}(\sigma, \tau) \rightarrow X^{\mu}(\sigma, \tau)+\varepsilon^{\mu} \tag{11}
\end{equation*}
$$

Assume that the space coordinate σ is periodic; $\sigma \in[0,2 \pi)$ and $X^{\mu}(\sigma, \tau)=X^{\mu}(\sigma+$ $2 \pi, \tau), g^{m n}(\sigma, \tau)=g^{m n}(\sigma+2 \pi, \tau)$.
c) Assume a flat embedding space $G_{\mu \nu}(X)=\eta_{\mu \nu}$ and derive the field equations for the fields $X^{\mu}(\sigma, \tau)$. Verify that the charges are in fact conserved.

Discussion 3 Field equations for a scalar field.
Consider a scalar field ϕ in the Scharzschild geometry,

$$
\begin{equation*}
d s^{2}=-f(r) d t^{2}+f(r)^{-1} d r^{2}+r^{2} d \Omega_{2}^{2}, \quad f(r)=\left(1-\frac{2 m}{r}\right) \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
S=-\frac{1}{2} \int d x^{4} \sqrt{g}\left(g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right) . \tag{13}
\end{equation*}
$$

a) Give the field equations for the scalar field $\phi(t, r, \theta, \varphi)$.
b) Work out the field equation for $h_{l, m}(t, r)$ for the ansatz,

$$
\begin{equation*}
\phi(t, r, \theta, \varphi)=h_{l m}(t, r) Y_{l m}(\theta, \varphi), \tag{14}
\end{equation*}
$$

using,

$$
\frac{1}{\sin (\theta)} \partial_{\theta}\left(\sin (\theta) \partial_{\theta} Y_{l m}(\theta, \varphi)\right)+\frac{1}{\sin ^{2}(\theta)} \partial_{\varphi}^{2} Y_{l m}(\theta, \varphi)=-l(l+1) Y_{l m}(\theta, \varphi) .
$$

c) Transform the differential equation to tortoise coordinates with $\partial_{r}=d r^{*} / d r \partial_{r^{*}}$ and $d r^{*} / d r=f^{-1}$.
d) Show that the redefinition of the fields $h_{l m}\left(t, r^{*}\right)=\psi_{l m}\left(t, r^{*}\right) / r$ leads to the field equation,

$$
\begin{equation*}
\left(\partial_{t}^{2}-\partial_{r^{*}}^{2}\right) \psi_{l m}\left(t, r^{*}\right)+V_{l}\left(r^{*}\right) \psi_{l m}\left(t, r^{*}\right), \quad V_{l}\left(r^{*}\right)=f(r)\left(\frac{l(l+1)}{r^{2}}+\frac{2 m}{r^{3}}\right) . \tag{15}
\end{equation*}
$$

e) Discuss the solutions to the above field equation in the asymtotic regions near the horizon and near spatial infinity.

Discussion 4 Near horizon geometry of Black Holes.
Consider the Schwarzschild metric and the Reissner Nordstrøm metric,

$$
\begin{equation*}
d s^{2}=-f(r) d t^{2}+f(r)^{-1} d r^{2}+r^{2} d \Omega_{2}^{2}, \tag{16}
\end{equation*}
$$

for which $f(r)$ takes the form,

$$
\begin{equation*}
f(r)=1-\frac{2 m_{S}}{r}, \quad \text { or } \quad f(r)=1-\frac{2 m_{R N}}{r}+\frac{q^{2}}{r^{2}}, \tag{17}
\end{equation*}
$$

respectively.
a) Identify the locations of the event horizon(s). (Consider only the parameter ranges with $m_{S}>0$ and $m_{R N}>0$.)
b) Consider the hypersurfaces of the singularities $r \rightarrow 0$. Are the singularities spacelike or timelike?
c) For which cases can we speak of naked singularities?
d) Consider the near-horizon geometries; which of the two cases can be found when we expand the metric close to the location of the apparent horizon,

$$
\begin{array}{ll}
\text { Rindler-like: } & d s^{2}=-\kappa^{2} \rho^{2} d t^{2}+d \rho^{2}+R^{2} d \Omega_{2}^{2} \\
A d S_{2} \times S_{2}: & d s^{2}=R^{2} \frac{\left(-d t^{2}+d y^{2}\right)}{y^{2}}+R^{2} d \Omega_{2}^{2} \tag{19}
\end{array}
$$

and determine the parameters κ and R.

