Übungen ART

WS 2014

Exercise 37 Tensors.

The addition rule for two tensors S and T of the same rank (k, l) is defined by,

$$
\begin{equation*}
(S+T)\left(\omega_{1}, \ldots, \omega_{k}, v_{1}, \ldots, v_{l}\right):=S\left(\omega_{1}, \ldots, \omega_{k}, v_{1}, \ldots, v_{l}\right)+T\left(\omega_{1}, \ldots, \omega_{k}, v_{1}, \ldots, v_{l}\right) \tag{1}
\end{equation*}
$$

Show, that the sum of the tensors $(S+T)$ is in fact a tensor being a multi linear map in all its arguments.

The tensor product of a tensor T with rank $\left(k^{\prime}, l^{\prime}\right)$ and a tensor S with $\operatorname{rank}\left(k-k^{\prime}, l-l^{\prime}\right)$ (with $k \geq k^{\prime}$ and $l \geq l^{\prime}$) is defined by,

$$
\begin{equation*}
(S \otimes T)\left(\omega_{1}, \ldots, \omega_{k}, v_{1}, \ldots, v_{l}\right):=S\left(\omega_{1}, \ldots, \omega_{k^{\prime}}, v_{1}, \ldots, v_{l^{\prime}}\right) \cdot T\left(\omega_{k^{\prime}+1}, \ldots, \omega_{k}, v_{l^{\prime}+1}, \ldots, v_{l}\right) . \tag{2}
\end{equation*}
$$

Show that this definition of the product gives a tensor of rank (k, l).
Furthermore, show that the tensor product is associative such that, $S \otimes(T \otimes U)=$ $(S \otimes T) \otimes U$. For simplicity show this assuming that S, T and U are rank $(1,0)$ tensors.

Next start from the (k, l) tensor T,

$$
\begin{equation*}
T=T_{j_{1} \ldots j_{l}}^{i_{1} \ldots i_{k}} \partial_{i_{1}} \otimes \ldots \partial_{i_{k}} \otimes d x^{j_{1}} \otimes \ldots \otimes d x^{j_{l}}, \tag{3}
\end{equation*}
$$

and change to a new coordinate basis for geneneral coordinate transformations $y^{i}(x)_{i=1, D}$ with the new basis vectors $\frac{\partial}{\partial y^{j}}$ and one-forms $d y^{j}$. How do the components $T_{j_{1} j_{2} \ldots j_{l}}^{i_{1} i_{2} \ldots i_{k}}$ of the tensor transform?

Exercise 37 Binachi Identity.

Show/argue that the Jacobi identity,

$$
\begin{equation*}
\left[D_{i},\left[D_{j}, D_{k}\right]\right]+\left[D_{j},\left[D_{k}, D_{i}\right]\right]+\left[D_{k},\left[D_{i}, D_{j}\right]\right]=0 \tag{4}
\end{equation*}
$$

holds for covariant derivatives. (It is sufficient to show this property for the components of a vector field.)

Exercise 38 Curvature Tensor and Torsion
Derive the explicit form of the components of the curvature tensor $R_{\sigma \mu \nu}^{\rho}$ and the torsion tensor $T_{\mu \nu}^{\sigma}$ in terms of connection coefficients $\Gamma_{\nu \rho}^{\mu}$ from the relation,

$$
\begin{equation*}
\left[D_{\mu}, D_{\nu}\right] V^{\rho}=R_{\sigma \mu \nu}^{\rho} V^{\sigma}+T_{\mu \nu}^{\sigma} D_{\sigma} V^{\rho} \tag{5}
\end{equation*}
$$

