Übungen ART

WS 2014

Exercise 39 Covariant Derivative.

Use the definition of the covariant derivative $\nabla_{(.)}$to express the the connection coefficients,

$$
\begin{equation*}
\Gamma_{i^{\prime} k^{\prime}}^{l^{\prime}} \partial_{l^{\prime}}:=\nabla_{\partial_{i^{\prime}}}\left(\partial_{k^{\prime}}\right), \quad \partial_{i^{\prime}}=\frac{\partial x^{j}}{\partial x^{i^{\prime}}} \partial_{j}, \tag{1}
\end{equation*}
$$

in terms of the connection coefficients $\Gamma_{m n}^{l}$ in the un-primed coordinate system.
Consider the commutator of covariant derivatives

$$
\begin{equation*}
\left[D_{i}, D_{j}\right] f(x), \tag{2}
\end{equation*}
$$

acting on functions $f(x)$ and show that it is proportional to the torsion tensor.
Consider the action of the covariant derivative on a rank $(2,0)$ tensor and derive the action of the derivative on the components $D_{k} T^{i j}$,

$$
\begin{equation*}
T=T^{i j} \partial_{i} \otimes \partial_{j}, \quad \nabla_{k} T=\left(D_{k} T^{i j}\right) \partial_{i} \otimes \partial_{j} \tag{3}
\end{equation*}
$$

Exercise 40 Curvature Tensor.
Show the following symmetry properties of the Riemann tensor,

$$
\begin{align*}
& R_{\alpha \beta \mu \nu}=-R_{\beta \alpha \mu \nu}=-R_{\alpha \beta \nu \mu}=R_{\mu \nu \alpha \beta}, \tag{4}\\
& R_{\alpha \beta \mu \nu}+R_{\alpha \mu \nu \beta}+R_{\alpha \nu \beta \mu}=0 . \tag{5}
\end{align*}
$$

It is best to work in a locally inertial coordinate system. Argue why the symmetry properties hold in a general coordinate system. How many independent components does the Riemann tensor have in D dimensions. (It is OK to consult the literature for the counting argument.)

Exercise 41 Implications of the Bianchi Identity.
Given a metric compatible torsion free connection. Show that the covariant derivative of the tensor $d x^{i} \partial_{i}:=\sum_{i} d x^{i} \otimes \partial_{i}$ vanishes,

$$
\begin{equation*}
\nabla_{k}\left(d x^{i} \otimes \partial_{i}\right)=0 \tag{6}
\end{equation*}
$$

Give the components of the tensor and show the same statement using component notation, $D_{k} T^{i}{ }_{j}$.

Show that the covariant derivative of the inverse metric vanishes,

$$
\begin{equation*}
D_{i} g^{j k}=0 \tag{7}
\end{equation*}
$$

To this end use the definition of the inverse metric $g_{i j} g^{j k}=\delta_{i}^{k}$.
Start from the Bianchi identity,

$$
\begin{equation*}
D_{i} R^{m}{ }_{l j k}+D_{j} R^{m}{ }_{l k i}+D_{k} R^{m}{ }_{l i j}=0, \tag{8}
\end{equation*}
$$

and derive that the divergence of the Einstein tensor vanishes,

$$
\begin{equation*}
D_{i} G^{i j}=D_{i}\left(R^{i j}-\frac{1}{2} g^{i j} R\right)=0 . \tag{9}
\end{equation*}
$$

Consider the extension of the Einstein tensor by including the dark-energy term,

$$
\begin{equation*}
\left(R^{i j}-g^{i j} R+\Lambda g^{i j}\right) \tag{10}
\end{equation*}
$$

starting with an arbitrary function Λ. Under what conditions does the divergence of this tensor vanish?

