Übungen ART II

Exercise 6 Transverse-traceless gauge

The polarization tensors of a plane gravitational wave with wave-vector k^{μ} in transversetraceless gauge satisfy the conditions

$$
\begin{equation*}
\epsilon_{\mu}^{\prime \mu}(k)=0, \quad \epsilon^{\prime \mu \nu}(k) u_{\nu}=0, \tag{1}
\end{equation*}
$$

with a time-like unit vector $u_{\nu}, u^{2}=-1$, which satisfies $(u \cdot k) \neq 0$. Show that any polarization tensor satisfying the Lorenz-gauge condition $\epsilon^{\mu \nu}(k) k_{\nu}=0$ can be brought to transverse-traceless gauge using a gauge transformation of the form

$$
\epsilon^{\prime \mu \nu}(k)=\epsilon^{\mu \nu}(k)-\mathrm{i}\left(k^{\mu} \xi^{\nu}(k)+\xi^{\mu}(k) k^{\nu}\right)+\mathrm{i} \eta^{\mu \nu}(k \cdot \xi(k)) .
$$

a) Write down the conditions on the gauge functions ξ^{μ} arising from the equations (1) and argue that they can be satisfied using the Ansatz

$$
\xi^{\mu}(k)=\xi_{0} u^{\mu}+\xi_{+} k^{\mu}+\xi_{\perp} \epsilon^{\mu \nu}(k) u_{\nu} .
$$

b) Show that ξ_{0} is determined from the condition for the tracelessness of $\epsilon^{\prime \mu \nu}$.
c) Show that ξ_{\perp} and ξ_{+}can be chosen so that the second condition in (1) is satisfied.

Exercise 7 Particle motion in gravitational waves

Consider a gravitational wave, which is described in a coordinate system where it satisfies the transverse-traceless gauge. In this coordinate system, the invariant line element takes the form

$$
\begin{equation*}
d s^{2}=-d t^{2}+d z^{2}+\left(1+h_{+}(t-z)\right) d x^{2}+\left(1-h_{+}(t-z)\right) d y^{2}, \tag{2}
\end{equation*}
$$

with some function $h_{+}(t-z)$.
a) Consider a particle at rest at the point \vec{x} at time $t=0$. Evaluate the geodesic equation at time $t=0$ to conclude that the particle stays at rest in the presence of the gravitational wave in the transverse-traceless coordinate system.
b) Show that the proper distance $\Delta s=\int_{x_{0}}^{x_{1}} \sqrt{d s^{2}}$ between the two space-time points $x_{0}^{\mu}=(t, x, 0,0)$ and $x_{1}^{\mu}=(t, x+L, 0,0)$ for small L is approximately given by

$$
\Delta s \approx\left(1+\frac{1}{2} h_{+}(t)\right) L,
$$

allowing to measure the effect of the gravitational wave.

Exercise 8 Toy model of a gravitational wave detector

As a simple model for a gravitational wave detector, consider two point masses connected by a spring. The equation of motion for the separation S^{i} of the two masses is given by that of a damped harmonic oscillator in an external force given in terms of the field $h_{i j}^{T T}$ of the gravitational wave:

$$
\ddot{S}^{i}+2 \gamma \dot{S}^{i}+\omega_{0}^{2} S^{i}=\frac{1}{2} \ddot{h}_{i j}^{T T} S^{j}
$$

with the damping rate γ. This expression can either be derived in the transverse-traceless frame taking the result of Ex. 7 b) for the proper length of the spring into account, or in a freely-falling frame using the result for the effective Newtonian force derived in the lecture. For the example of a plane gravitational wave propagating along the z-axis with angular frequency ω and for two masses moving along the x-axis, the equation can be approximated as

$$
\begin{equation*}
\ddot{S}+2 \gamma \dot{S}+\omega_{0}^{2} S=-\frac{\omega^{2}}{2} h_{+} S_{0} \cos \omega t \tag{3}
\end{equation*}
$$

where S_{0} is the unstretched length of the spring and the constant h_{+}is the amplitude of the gravitational wave.
a) The solution to eq. (3) is of the form $S=R \cos (\omega t+\varphi)$. Use standard results for the forced, damped harmonic oscillator to compute the amplitude R for the resonant case $\omega=\omega_{0}$.
b) If the two masses are initially at rest, the energy of the oscillator is given by

$$
E=\frac{m}{4}\left(\dot{S}^{2}+\omega_{0}^{2} S^{2}\right)
$$

Compute the average energy $\langle E\rangle$ over one period $2 \pi / \omega$.
c) How large are R and $\langle E\rangle$ for the values $\omega=\omega_{0}=1 \mathrm{kHz}, S_{0}=2 \mathrm{~m}, m=2 \times 10^{3} \mathrm{~kg}$, $h_{+}=10^{-20}$ and the "quality factor" of the oscillator $Q=\omega / 2 \gamma=10^{6}$? For realistic examples of resonance detectors for gravitational waves you can consult websites of the projects AURIGA (http://www.auriga.lnl.infn.it/) and miniGRAIL (http://www.minigrail.nl/).

