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Exercise 6 Transverse-traceless gauge

The polarization tensors of a plane gravitational wave with wave-vector kµ in transverse-
traceless gauge satisfy the conditions

ε′
µ
µ(k) = 0 , ε′

µν
(k)uν = 0, (1)

with a time-like unit vector uν , u
2 = −1, which satisfies (u · k) 6= 0. Show that any

polarization tensor satisfying the Lorenz-gauge condition εµν(k)kν = 0 can be brought to
transverse-traceless gauge using a gauge transformation of the form

ε′
µν

(k) = εµν(k)− i(kµξν(k) + ξµ(k)kν) + iηµν(k · ξ(k)).

a) Write down the conditions on the gauge functions ξµ arising from the equations (1)
and argue that they can be satisfied using the Ansatz

ξµ(k) = ξ0u
µ + ξ+k

µ + ξ⊥ε
µν(k)uν .

b) Show that ξ0 is determined from the condition for the tracelessness of ε′µν .

c) Show that ξ⊥ and ξ+ can be chosen so that the second condition in (1) is satisfied.

Exercise 7 Particle motion in gravitational waves

Consider a gravitational wave, which is described in a coordinate system where it satisfies
the transverse-traceless gauge. In this coordinate system, the invariant line element takes
the form

ds2 = −dt2 + dz2 + (1 + h+(t− z))dx2 + (1− h+(t− z))dy2, (2)

with some function h+(t− z).

a) Consider a particle at rest at the point ~x at time t = 0. Evaluate the geodesic
equation at time t = 0 to conclude that the particle stays at rest in the presence of
the gravitational wave in the transverse-traceless coordinate system.

b) Show that the proper distance ∆s =
∫ x1
x0

√
ds2 between the two space-time points

xµ0 = (t, x, 0, 0) and xµ1 = (t, x+ L, 0, 0) for small L is approximately given by

∆s ≈
(

1 +
1

2
h+(t)

)
L,

allowing to measure the effect of the gravitational wave.



Exercise 8 Toy model of a gravitational wave detector

As a simple model for a gravitational wave detector, consider two point masses connected
by a spring. The equation of motion for the separation Si of the two masses is given by
that of a damped harmonic oscillator in an external force given in terms of the field hTTij
of the gravitational wave:

S̈i + 2γṠi + ω2
0S

i =
1

2
ḧTTij S

j

with the damping rate γ. This expression can either be derived in the transverse-traceless
frame taking the result of Ex. 7 b) for the proper length of the spring into account, or
in a freely-falling frame using the result for the effective Newtonian force derived in the
lecture. For the example of a plane gravitational wave propagating along the z-axis with
angular frequency ω and for two masses moving along the x-axis, the equation can be
approximated as

S̈ + 2γṠ + ω2
0S = −ω

2

2
h+S0 cosωt, (3)

where S0 is the unstretched length of the spring and the constant h+ is the amplitude of
the gravitational wave.

a) The solution to eq. (3) is of the form S = R cos(ωt+ϕ). Use standard results for the
forced, damped harmonic oscillator to compute the amplitude R for the resonant
case ω = ω0.

b) If the two masses are initially at rest, the energy of the oscillator is given by

E =
m

4
(Ṡ2 + ω2

0S
2)

Compute the average energy 〈E〉 over one period 2π/ω.

c) How large are R and 〈E〉 for the values ω = ω0 = 1 kHz, S0 = 2 m, m = 2× 103 kg,
h+ = 10−20 and the “quality factor” of the oscillator Q = ω/2γ = 106? For reali-
stic examples of resonance detectors for gravitational waves you can consult websi-
tes of the projects AURIGA (http://www.auriga.lnl.infn.it/) and miniGRAIL
(http://www.minigrail.nl/).


