Exercise 19 Conserved charge of black holes

Consider the Komar integral associated with the Killing vector field ξ,

$$
\begin{equation*}
Q_{\xi}=\frac{1}{4 \pi G} \int d x^{2} \sqrt{\gamma^{(2)}} n_{\alpha} \sigma_{\beta} \nabla^{\alpha} \xi^{\beta} \tag{1}
\end{equation*}
$$

for the Schwarzschild black hole. Here the integral is performed over a two-sphere at spatial infinity.

The quantities in the integral are given as follows: n_{α} denotes components of the time like unit one-form, σ_{β} denotes components of the radial unit one-form. ξ denotes a Killing vector field and $\gamma_{i j}^{(2)}$ stands for the pull back of the metric to the two sphere at spatial infinity which is given by $t=$ fixed and large radial coordinate $r \rightarrow \infty$.

Compute the conserved charges corresponding to the Killing vectors $\xi=\partial_{t}$ and $\xi=\partial_{\phi}$ of the geometry.

Exercise 20 Surface gravity and Hawking temperature.

The Hawking temperature of a black hole is given in terms of the surface gravity κ_{ξ} of the event horizon, $T_{H}=\kappa_{\xi} / 2 \pi$. The aim of this exercise is to collect evidence that the surface gravity is constant along the event horizon implying a constant temperature over the surface of the black hole

Use the definition of the surface gravity of a Killing horizon of the Killing vector field ξ,

$$
\begin{equation*}
\xi^{\beta} \nabla_{\beta} \xi_{\alpha}=\kappa_{\xi} \xi_{\alpha} \tag{2}
\end{equation*}
$$

and compute the directional derivative of κ_{ξ} along the Killing field ξ following the below steps:
a) The Killing horizon coincides with the location where the Killing vector is light like $S=-\xi^{\alpha} \xi_{\alpha}=0$. Demonstrate that the Killing vector field is tangent to the Killing horizon using the Killing equation.
b) Compute the directional derivative of equation (2) in order to show that κ_{ξ} does not change along the tangent direction ξ. Remark: use the property of Killing vectors, $\nabla_{\gamma} \nabla_{\beta} \xi^{\alpha}=R_{\beta \gamma \delta}^{\alpha} \delta^{\delta}$ in order to evaluate the covariant derivatives.

Exercise 21 Coordinate systems in Schwarzschild geometry

The aim of the exercise is to find the geodesic completion of the metric,

$$
\begin{equation*}
d s^{2}=-x^{2} d t^{2}+d x^{2}, \tag{3}
\end{equation*}
$$

defined for $-\infty<t<\infty, 0<x<\infty$ with a coordinate singularity at $x=0$. Instructions:
a) Transform to light-cone coordinates (u, v) of the ingoing and outgoing light rays.
b) Introduce an affine parametrization for the light rays. To this end use that ∂_{t} is a Killing vector and that the energy E is conserved along light rays with affine parametrization (here the parameter is called λ); $k^{a}=d x^{a} / d \lambda$ and $E:=-g_{a b} k^{a}\left(\partial_{t}\right)^{b}$. this can be used to tranform the light-cone coordinates to affine light-cone coordinates (U, V).
c) Give the metric in time and space coordinats $T=(U+V) / 2, X=(V-U) / 2$ and draw the space time diagram. Which part of the extended spacetime corresponds to the original space time.

