Übungen ART II SoSe 2015

Exercise 19 Conserved charge of black holes

Consider the Komar integral associated with the Killing vector field ξ ,

$$Q_{\xi} = \frac{1}{4\pi G} \int dx^2 \sqrt{\gamma^{(2)}} n_{\alpha} \sigma_{\beta} \nabla^{\alpha} \xi^{\beta} , \qquad (1)$$

for the Schwarzschild black hole. Here the integral is performed over a two-sphere at spatial infinity.

The quantities in the integral are given as follows: n_{α} denotes components of the time like unit one-form, σ_{β} denotes components of the radial unit one-form. ξ denotes a Killing vector field and $\gamma_{ij}^{(2)}$ stands for the pull back of the metric to the two sphere at spatial infinity which is given by t = fixed and large radial coordinate $r \to \infty$.

Compute the conserved charges corresponding to the Killing vectors $\xi = \partial_t$ and $\xi = \partial_\phi$ of the geometry.

Exercise 20 Surface gravity and Hawking temperature.

The Hawking temperature of a black hole is given in terms of the surface gravity κ_{ξ} of the event horizon, $T_H = \kappa_{\xi}/2\pi$. The aim of this exercise is to collect evidence that the surface gravity is constant along the event horizon implying a constant temperature over the *surface* of the black hole

Use the definition of the surface gravity of a Killing horizon of the Killing vector field ξ ,

$$\xi^{\beta} \nabla_{\beta} \xi_{\alpha} = \kappa_{\xi} \, \xi_{\alpha} \,, \tag{2}$$

and compute the directional derivative of κ_{ξ} along the Killing field ξ following the below steps:

- a) The Killing horizon coincides with the location where the Killing vector is light like $S = -\xi^{\alpha}\xi_{\alpha} = 0$. Demonstrate that the Killing vector field is tangent to the Killing horizon using the Killing equation.
- b) Compute the directional derivative of equation (2) in order to show that κ_{ξ} does not change along the tangent direction ξ . Remark: use the property of Killing vectors, $\nabla_{\gamma} \nabla_{\beta} \xi^{\alpha} = R^{\alpha}_{\beta\gamma\delta} \xi^{\delta}$ in order to evaluate the covariant derivatives.

Exercise 21 Coordinate systems in Schwarzschild geometry

The aim of the exercise is to find the geodesic completion of the metric,

$$ds^2 = -x^2 dt^2 + dx^2 \,, \tag{3}$$

defined for $-\infty < t < \infty$, $0 < x < \infty$ with a coordinate singularity at x = 0. Instructions:

a) Transform to light-cone coordinates (u, v) of the ingoing and outgoing light rays.

- b) Introduce an affine parametrization for the light rays. To this end use that ∂_t is a Killing vector and that the energy E is conserved along light rays with affine parametrization (here the parameter is called λ); $k^a = dx^a/d\lambda$ and $E := -g_{ab}k^a(\partial_t)^b$. this can be used to transform the light-cone coordinates to affine light-cone coordinates (U, V).
- c) Give the metric in time and space coordinats T = (U + V)/2, X = (V U)/2 and draw the space time diagram. Which part of the extended spacetime corresponds to the original space time.