Exercise 22 Field strength with spherical symmetry

The aim of this exercise is to construct the electro-magnetic field-strength tensor for a point like electro-magnetic charge; with charge vector $\vec{q}=\left(Q_{e}, Q_{m}\right)$. Furthermore, the resulting field strength should be expressed in spherical coordinates for the space time,

$$
\begin{equation*}
d s^{2}=-f(r, t) d t^{2}+f(r, t)^{-1} d r^{2}+r^{2} d \Omega^{2} . \tag{1}
\end{equation*}
$$

Solve the following subtasks:
a) Start from the one-form potential for a spherical point-like charge $\phi(r ; Q)=Q / r d t$. Use the potential to calculate the field strength $F_{e}=d \phi\left(r, Q_{e}\right)$ as well as the dual field strength $\tilde{F}_{m}=d \phi\left(r ; Q_{m}\right)$ of the magentic potential.
b) Next, superimpose the field strength \tilde{F}_{m} to the electric field strength F_{e} to obtain the electro-magnetic field strength $F=F_{e}+* \tilde{F}_{m}$ for a electro-magnetic charge vector \vec{q}.
c) Use Stoke's theorem to compute the electric and magnetic charges from surface integrals. The Maxwell equations for a mix of electric and magnetic charges is given by,

$$
\begin{equation*}
d F=* j_{m}, \quad d \tilde{F}=* j_{e}, \quad \tilde{F}:=* F . \tag{2}
\end{equation*}
$$

Exercise 23 Horizons in Kerr geometry

The event horizons in the Kerr geometry are Killing horizons of the Killing field $\chi=\partial_{t}+$ $\Omega_{H}^{ \pm} \partial_{\phi}$ where $\Omega_{H}^{ \pm}$is constant. Use the definition for a Killing horizon $f(x)=d s^{2}(\chi, \chi)=0$ as well as the condition that the surface is light like in order to determine the constants $\Omega_{H}^{ \pm}$and the equation $r=r_{ \pm}(a, M)$ defining the event horizons.

The Kerr metric is given by,

$$
\begin{align*}
d s^{2}= & -\left(1-\frac{2 G M r}{\rho^{2}}\right) d t^{2}-\frac{2 G M a r \sin ^{2} \theta}{\rho^{2}}(d t d \phi+d \phi d t)+\frac{\rho^{2}}{\Delta} d r^{2}+ \tag{3}\\
& +\rho^{2} d \theta^{2}+\frac{\sin ^{2} \theta}{\rho^{2}}\left[\left(r^{2}+a^{2}\right)^{2}-a^{2} \Delta \sin ^{2} \theta\right] d \phi^{2}, \tag{4}\\
\Delta(r)= & r^{2}-2 G M r+a^{2}, \tag{5}\\
\rho^{2}(r, \theta)= & r^{2}+a^{2} \cos ^{2} \theta, \tag{6}
\end{align*}
$$

with the Killing vectors being ∂_{t} and ∂_{ϕ}.

Exercise 24 Hyper-surface orthogonal Killing vectors

The condition for a vector field $\xi^{\mu} \partial_{\mu}$ to be hyper-surface orthogonal is given by $\xi_{[\mu} \nabla_{\nu} \xi_{\rho]}=0$ or similarly in form notation by $\zeta \wedge d \zeta=0$ with $\zeta=\xi_{\mu} d x^{\mu}$.
a) Are the above conditions in fact identical? Under what conditions?
b) Verify that the Killing vector field ∂_{t} is hyper-surface orthogonal in the Schwarzschild geometry. Is the Killing field ∂_{ϕ} hyper-surface orthogonal?
c) Consider the Kerr geometry. Can a hyper-surface orthogonal Killing field be constructed? Consider a linear combination of the Killing fields ∂_{t} and ∂_{ϕ} and derive conditions first for the generic metric with $d s^{2}=g_{t t} d t^{2}+g_{\phi \phi} d \phi^{2}+g_{t \phi}(d t d \phi+d \phi d t)+\cdots$. Finally, specialize to the explicit form of the metric. (Here terms containing no differentials $d \phi$ or $d t$ are omitted in $d s^{2}$.)
d) Identify the surface and the constants $\Omega_{H}^{ \pm}$for which $\partial_{t}+\Omega_{H}^{ \pm} \partial_{\phi}$ is hyper-surface orthogonal in the Kerr geometry.

