Quantum Field Theory II - WS16
Due 28.10.2016
Exercises - Set 1
Profs. H. Ita and F. Febres Cordero
Universität Freiburg

Gauge Theories - First Set of Exercises

1 Free actions

Consider the following Lagrangians,

$$
\begin{align*}
\mathcal{L}_{q e d} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-M\right) \psi-e Q A_{\mu} \bar{\psi} \gamma^{\mu} \psi, \tag{1}\\
\mathcal{L}_{s} & =\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-V(\phi) \tag{2}\\
\mathcal{L}_{c s} & =\partial_{\mu} \phi_{a}^{\dagger} \partial^{\mu} \phi_{b} \delta^{a b}-V\left(\phi^{a}\right) . \tag{3}
\end{align*}
$$

(a) Justify the sign and normalisation of the kinetic terms. What determines the sign of the potential term?
(b) Show that $\mathcal{L}_{q e d}$ is gauge invariant.
(c) Compute the equations of motion from requiring that the functional derivative of the respective actions,

$$
\begin{equation*}
\frac{\delta}{\delta \psi_{l}(x)} I\left(\psi_{l}\right)=0, \quad I\left(\psi_{l}\right)=\int d^{4} x \mathcal{L}\left(\psi_{l}, \partial_{\mu} \psi_{l}\right), \tag{4}
\end{equation*}
$$

vanishes. It is OK to compute this for a generic Lagrangian and then insert the explicit form of the Lagrangians.
(d) Compute the canonical momenta.

2 Non-abelian field strength tensor

Compute the field strength tensor $F_{\mu \nu}^{a}$ from the commutator of covariant derivatives acting on a field ψ_{l},

$$
\begin{equation*}
\left(\left[D_{\mu}, D_{\nu}\right] \psi\right)_{l}=-i F_{\mu \nu}^{a}\left(t_{a}\right)_{l}^{m} \psi_{m} . \tag{5}
\end{equation*}
$$

Use the gauge transformations of the gauge potential,

$$
\begin{equation*}
\delta A_{\mu}^{a}=\partial_{\mu} \epsilon^{a}+C_{c b}^{a} \epsilon^{b} A_{\mu}^{c} \tag{6}
\end{equation*}
$$

to obtain the transformation behavior of the field strength tensor $\delta F_{\mu \nu}^{a}$.

3 Group properties

Given are the Lie-algebra generators t_{a} of $S U(3)$ in the form of the Gell-Mann matrices λ_{a},

$$
\begin{array}{ll}
t_{a}= & \frac{1}{2} \lambda_{a}, \\
\lambda_{1} & =\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \\
\lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \quad \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
\lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) . \tag{10}
\end{array}
$$

(a) Compute the structure constants $C_{b c}^{a}$ from the commutators,

$$
\begin{equation*}
\left[t_{a}, t_{b}\right]=i C_{a b}^{c} t_{c} \tag{11}
\end{equation*}
$$

Feel free to employ a computer algebra system (e.g. FORM, Maple, Mathematica, etc) for this task.
(b) Write out the Jacobi identity in terms of the structure constants. Show that the adjoint generators $\left(t_{i}^{A}\right)_{b}^{a}$,

$$
\begin{equation*}
\left(t_{i}^{A}\right)_{b}^{a}=-i C_{i b}^{a} \tag{12}
\end{equation*}
$$

fulfill the commutator relation of the Lie algebra.
(c) Compute the functions C_{A}, C_{F}, T_{A} and T_{F}.

4 The Haar Measure for $S U(2)$

Compute the Haar measure of the group $S U(2)$ with the following instructions. The group is conveniently parametrized using the three angles θ, ϕ and ψ and Lie algebra generators proportional to the Pauli matrices,

$$
\begin{align*}
\alpha^{a} & =\theta\{\cos (\psi) \sin (\phi), \sin (\psi) \sin (\phi), \cos (\phi)\} \tag{13}\\
\tau_{1} & =\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \tau_{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \tau_{3}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) . \tag{14}
\end{align*}
$$

With this, any element of the group g can be expressed as:

$$
\begin{align*}
g(\theta, \phi, \psi) & =\exp \left(i \alpha^{a} \tau_{a}\right) \\
& =\left(\begin{array}{cc}
\cos \left(\frac{\theta}{2}\right)+i \sin \left(\frac{\theta}{2}\right) \cos (\phi)+ & i \sin \left(\frac{\theta}{2}\right) \sin (\phi) \exp (-i \psi) \\
i \sin \left(\frac{\theta}{2}\right) \sin (\phi) \exp (i \psi) & \cos \left(\frac{\theta}{2}\right)-i \sin \left(\frac{\theta}{2}\right) \cos (\phi)
\end{array}\right) \tag{15}
\end{align*}
$$

with $0 \leq \theta \leq 2 \pi, 0 \leq \phi<\pi$ and $0 \leq \psi \leq 2 \pi$.
(a) Verify the relation,

$$
\begin{equation*}
\operatorname{Tr}\left(\tau_{a} \tau_{b}\right)=T_{F} \delta_{a b}, \quad T_{F}=\frac{1}{2} \tag{16}
\end{equation*}
$$

(b) Compute the tangent vectors at the unit point corresponding to the directions θ, ϕ and ψ. Give the generators t_{θ}, t_{ψ} and t_{ϕ}.
(c) The tangent vectors at a generic point of the group are translated back to the unit point using,

$$
\begin{equation*}
g^{-1} \frac{\partial}{\partial x^{a}} g=\sum i t_{a} M^{a b}, \quad x^{a}=\{\theta, \psi, \phi\}, \tag{17}
\end{equation*}
$$

defining the matrix $M(\theta, \psi, \phi)$.
(d) Compute the measure,

$$
\begin{equation*}
d \mu(\theta, \psi, \phi)=\frac{1}{V} \operatorname{det}(M) d \theta d \psi d \phi \tag{18}
\end{equation*}
$$

