Complete exercises 9 and 10 from the previous exercise sheet.

Exercise 11 Two-to-two scattering (see e.g. Schwartz section 5.1.2)
Consider the kinematics of a $2 \rightarrow 2$ scattering process. Assume that the colliding particles move in opposite direction along the z axis and that the sum of the initial-state momenta is given by $P=\left\{E_{c m}, 0,0,0\right\}$. The final state particles have generic masses $m_{3,4}$.
a) Solve the on-shell conditions $p_{i}^{2}=m_{i}^{2}$ and momentum-conservation condition $P=$ $p_{3}+p_{4}$ using a parametrisation in terms of polar and azimuthal angle between the final state three momentum \vec{p}_{3} and the z-axis. How many independent momentum components are expected? Draw the mass-shell conditions and the allowed final-state momenta in the $p_{f}^{x}=0$ slice of momentum space.
b) Show that the Lorentz invariant phases-space measure,

$$
\begin{equation*}
d \Pi_{2, \mathrm{LIPS}}=(2 \pi)^{4} \delta^{4}\left(P-p_{3}-p_{4}\right) \prod_{f=3,4} \frac{d^{3} p_{f}}{(2 \pi)^{3}} \frac{1}{2 E_{f}}, \tag{1}
\end{equation*}
$$

is given by,

$$
\begin{equation*}
d \Pi_{2, \mathrm{LIPS}}=d \Omega \frac{1}{16 \pi^{2}} \frac{\left|\vec{p}_{3}\right|}{E_{\mathrm{cm}}} \theta\left(E_{\mathrm{cm}}-m_{3}-m_{4}\right), \tag{2}
\end{equation*}
$$

where $d \Omega=d \phi d(\cos \theta)$ denotes the angular volume element associated to polar and azimuthal angles between the final state three momenta. What is the physical interpretation of the θ-function?
c) Show that the cross section for such a process is given by,

$$
\begin{equation*}
d \sigma=d \Omega \frac{1}{64 \pi^{2} E_{\mathrm{cm}}^{2}} \frac{\left|\overrightarrow{p_{3}}\right|}{\left|\vec{p}_{1}\right|}|\mathcal{M}|^{2} \theta\left(E_{\mathrm{cm}}-m_{3}-m_{4}\right) . \tag{3}
\end{equation*}
$$

