Exercise 17 Some properties of Lorentz transformations (3 points)

Lorentz transformations, which transform a four-vector $a^{\mu}=\left(a^{0}, \vec{a}\right)$ to $a^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} a^{\nu}$, are given by 4×4 matrices Λ that leave the metric tensor $g^{\mu \nu}=\operatorname{diag}(+1,-1,-1,-1)$ invariant, i.e. $g^{\mu \nu}=\Lambda^{\mu}{ }_{\alpha} \Lambda^{\nu}{ }_{\beta} g^{\alpha \beta}$. In the following we consider the "proper orthochroneous Lorentz group" L_{+}^{\uparrow} that comprises all such Λ with the two constraints that $\operatorname{det} \Lambda=+1$ and $\Lambda^{0}{ }_{0}>0$. The group L_{+}^{\uparrow} consists of all rotations in space and "boosts", which relate two frames of reference with a non-vanishing relative velocity.
a) A boost with relative velocity $\vec{v}=\left(v^{1}, v^{2}, v^{3}\right)$ is described by the Λ matrix of the form

$$
L\left(v^{1}, v^{2}, v^{3}\right)^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
\gamma & -v^{1} \gamma & -v^{2} \gamma & -v^{3} \gamma \\
-v^{1} \gamma & 1+\frac{v^{1} v^{1}}{\vec{v}^{2}}(\gamma-1) & \frac{v^{1} v^{2}}{\vec{v}^{2}}(\gamma-1) & \frac{v^{1} v^{3}}{\vec{v}^{2}}(\gamma-1) \\
-v^{2} \gamma & \frac{v^{2} v^{1}}{\vec{v}^{2}}(\gamma-1) & 1+\frac{v^{2} v^{2}}{\vec{v}^{2}}(\gamma-1) & \frac{v^{2} v^{3}}{\vec{v}^{2}}(\gamma-1) \\
-v^{3} \gamma & \frac{v^{3} v^{1}}{\vec{v}^{2}}(\gamma-1) & \frac{v^{3} v^{2}}{\vec{v}^{2}}(\gamma-1) & 1+\frac{v^{3} v^{3}}{\vec{v}^{2}}(\gamma-1)
\end{array}\right),
$$

where $\gamma=1 / \sqrt{1-\vec{v}^{2}}$. Calculate the boosted components $x^{\prime \mu}$ for the four-vectors $x_{\|}^{\mu}=\left(x^{0}, r \vec{e}\right)$ and $x_{\perp}^{\mu}=\left(x^{0}, r \vec{e}_{\perp}\right)$ whose directions in space are parallel and perpendicular to the direction $\vec{e}=\vec{v} /|\vec{v}|$ of the relative velocity, respectively, i.e. $\vec{e}_{\perp} \cdot \vec{e}=0$.
b) Calculate $W=L_{2}\left(0,-v^{2}, 0\right) L_{1}\left(-v^{1}, 0,0\right) L_{2}\left(0, v^{2}, 0\right) L_{1}\left(v^{1}, 0,0\right)$ for small velocities v^{k} and keep terms up to quadratic order in products of components v^{k}. What kind of transformation is described by W ?
Hint: Expand the boost matrices to quadratic order in the velocities and show that they can be written in the form $L_{i}=\mathbf{1}-\frac{v_{i}}{c} K_{i}+\frac{1}{2}\left(\frac{v_{i}}{c}\right)^{2} K_{i}^{2}+\mathcal{O}\left(\frac{v_{i}}{c}\right)^{3}$ with four-by-four matrices K_{i}.
c) Show that the totally antisymmetric tensor

$$
\epsilon^{\mu \nu \rho \sigma}=\left\{\begin{aligned}
+1 & \text { if }(\mu \nu \rho \sigma)=\text { even permutation of }(0123) \\
-1 & \text { if }(\mu \nu \rho \sigma)=\text { odd permutation of }(0123), \\
0 & \text { otherwise. }
\end{aligned}\right.
$$

is an invariant tensor under all $\Lambda \in L_{+}^{\uparrow}$, i.e. $\epsilon^{\prime \mu \nu \rho \sigma}=\Lambda^{\mu}{ }_{\alpha} \Lambda^{\nu}{ }_{\beta} \Lambda^{\rho}{ }_{\gamma} \Lambda^{\sigma}{ }_{\delta} \epsilon^{\alpha \beta \gamma \delta}$.

Consider the defining representation fo the Lorentz group given by the rotations $\Lambda\left(\theta_{i}\right)$

$$
\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \cos \theta_{x} & \sin \theta_{x} \\
& & -\sin \theta_{x} & \cos \theta_{x}
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & & & \\
& \cos \theta_{y} & & -\sin \theta_{y} \\
& & 1 & \\
& \sin \theta_{y} & & \cos \theta_{y}
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & & & \\
& \cos \theta_{z} & \sin \theta_{z} & \\
& -\sin \theta_{z} & \cos \theta_{z} & \\
& & & 1
\end{array}\right)
$$

and the boosts $\Lambda\left(\beta_{i}\right)$,

$$
\left(\begin{array}{cccc}
\cosh \beta_{x} & \sinh \beta_{x} & & \\
\sinh \beta_{x} & \cosh \beta_{x} & & \\
& & 1 & \\
& & & 1
\end{array}\right) \quad\left(\begin{array}{cccc}
\cosh \beta_{y} & & \sinh \beta_{y} & \\
& 1 & & \\
\sinh \beta_{y} & & \cosh \beta_{y} & \\
& & & 1
\end{array}\right) \quad\left(\begin{array}{llll}
\cosh \beta_{z} & & & \sinh \beta_{z} \\
& 1 & & \\
& & 1 & \\
\sinh \beta_{z} & & & \cosh \beta_{z}
\end{array}\right)
$$

a) Compute the generators J_{i} and K_{i} of the Loranz transformations, which are given by the linear term of the Taylor expansions of the rotations and boosts respectively,

$$
\begin{equation*}
\Lambda\left(\theta_{i}\right)=1+i J_{i} \theta_{i}+\mathcal{O}\left(\theta_{i}^{2}\right), \quad \Lambda\left(\beta_{i}\right)=1+i K_{i} \beta_{i}+\mathcal{O}\left(\beta_{i}^{2}\right) \tag{1}
\end{equation*}
$$

b) Verify the commutator relations,

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=i \varepsilon_{i j k} J_{k}, \quad\left[J_{i}, K_{j}\right]=i \varepsilon_{i j k} K_{k}, \quad\left[K_{i}, K_{j}\right]=-i \varepsilon_{i j k} J_{k} \tag{2}
\end{equation*}
$$

c) Verify that the commutators of the linear combinations,

$$
\begin{equation*}
J_{i}^{ \pm}=\frac{1}{2}\left(J_{i} \pm i K_{i}\right) \tag{3}
\end{equation*}
$$

decouple into two sets J_{i}^{+}and J_{i}^{-}which commute with one another,

$$
\begin{equation*}
\left[J_{i}^{ \pm}, J_{j}^{ \pm}\right]=i \varepsilon_{i j k} J_{k}^{ \pm}, \quad\left[J_{i}^{+}, J_{j}^{-}\right]=0 \tag{4}
\end{equation*}
$$

