Uni-Logo

QFT I (SS17)

Lecturers

J.Prof. Dr. Harald Ita and Dr. Ben Page

 

Dates

  • Lecture: 4 hours, Mo 12-14, SRI, Mi 12-14, SRII; start: 24.04.2017 (Lecturer Harald Ita)
  • Tutorial: 2 hours, Di 12-14, SRI; start: 2.05.2017 (Tutor Ben Page). 
  • oral exams, last tutorial sheet on 18.7. Repetition class on 25.7.

Problem Sets for Tutorial

Exercises 1 (2.5.2017)

Exercises 2 (9.5.2017)

Exercises 3 (16.5.2017)

Exercises 4 (23.5.2017)

Exercises 5 (30.5.2017)

Exercises 6 (13.6.2017) [solutions]

Exercises 7 (20.6.2017)

Exercises 8 (27.6.2017)

Exercises 9 (4.7.2017)

Exercises 10 (11.7.2017)

Exercises 11 (18.7.2017)

 


Content

  • Quantization of scalar fields (Klein Gordon equation, classical field theory, canonical quantization, scattering theory and Feynman diagrams)
  • Vector-boson fields (classical field equations, electromagnetic interactions and the gauge principle, quantization of the electromagnetic field)  
  • Dirac fermions (basics of Lie Groups, Lorentz group and its representations, Dirac and Weyl equations, Poincare group and its representations, quantization of free Dirac fields, QED and perturbative evaluation, applications)
  • Quantization with functional integrals

 

For Bachelor-Students

 The lecture is suitable as supplementary or elective course; Wahlpflicht- bzw. Wahlbereich. It is equivalent to the  lecture "Theoretische Teilchenphysik"  in the course description.

Prerequisits

Quantum Mechanics, Electrodynamics and Special Relativity

 Requirements for Academic Record

  • active and regular participation in the tutorials, including solutions to 50% of the homework problems.
  • in case an exam ( "Prüfungsleistung")  is required, an oral exam will be offered. Prerequisite is the successful participation in the tutorials.

Further details will be given in the lecture/tutorials.

 


Textbooks

  • Schwartz: "Quantum Field Theory and the Standard Model"
  • Peskin/Schroeder: "An Introduction to Quantum Field Theory"
  • Itzykson/Zuber: "Quantum Field Theory"
  • Weinberg: "The Quantum Theory of Fields, Vol.1: Foundations"

  More advanced Textbooks

  • Siegel: "Fields" available online 
  • Böhm/Denner/Joos: "Gauge Theories of the Strong and Electroweak Interaction"
  • Weinberg: "The Quantum Theory of Fields, Vol.2: Modern Applications"
  • Nakahara: "Geometry, Topology and Physics"
  • Sexl, Urbantke: "Relativität, Gruppen, Teilchen"
  • Cvitanovic: "Field Theory", the Nordita 1983 Lecture notes available online
  • Coleman: "Notes from Sidney Coleman's Physics 253a" available online

  

Personal tools