Exercises to General Relativity I1I SS 2014

Exercise 5 Virasoro algebra

In the following two representations of the world-sheet generators of the conformal group
will be compared.

a) Consider the world-sheet vector fields &, = i7" 9, and show that they fulfill the
classical Virasoro algebra,
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b) Consider next the Virasoro generators,
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Use the commutator relations,
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to show that the Virasoro generators act in to following way on the mode operators
P
ay,
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c) Use the commutator relation (4) to show that the operators L,, do in fact fulfill the
Virasoro algebra,
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d) Consider the mode expansion of the operators X*(7,0),
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with 0% = (7 £ ) and compare the action of the vector fields &, one the operators
X*(1,0) (acting as derivatives &, (X*(7,0))) with the commutators [L,,, X*(7,0)].

Exercise 6 Classical string in light-cone gauge



Consider the light-cone coordinates in target space,
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such that the embedding functions X#(7,0) are written in the form,

X_<T7U):XO(T7U)_X1<T>O_)7 (11)
Xt (r,0) = X(1,0) + X*(1,0), (12)
and X*(7,0) with i = {2,..., D}. Furthermore, the reparametrization invariance on the

world sheet can be used to relate the world sheet time to the light cone coordinate X,
— 2(fT (o) + f(07)), so that the simple form X (7,0) = (ag + &f)/V4rTT can be
obtained.
The mode expansion of the remaining fields yp = {—, 2, ..., D} is given in the standard
from,
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with o0& = 74+ 0. In these coordinates the Virasoro constraints take a particularly simple
form allowing to obtain explicit solutions for the classical string equations. The following
steps should be a guide through the construction.

a) Compute the total momentum of the string,
Pt = T/dUX“. (16)

and express the modes af, @} in terms of the total momenta p* = {p*,p=,p?, ..., p"}.

b) Compute the Virasoro generators,
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c¢) Solve the Virasoro constraints (L, = 0 = L,,) under the assumption that only one
frequency is excited in the 2-3 plane; {a?, a3, a2 N?’} # 0. It is best to consider this
case in the center-of-mass frame system With x“ =p' =0.



d)

The angular momentum of a closed string is given by,
Ju =T / do (XuX,, - XVXu> . (18)
Compute the mass m? = p? and the angular momentum J? of the string solution

of the previous task. Plot the Regge trajectory r(n) := J?3/m? as a function of the
mode number n. What is the slope of the Regge trajectory?

Discussion 5 Komar integral

The aim of this section is to compute conserved quantities of blackhole geometries with
Killing vectors.

To this end consider a geometry with a Killing vector field K, with V(, K, := (V,K, +
V,K,)/2 = 0. In the following we will denote the Ricci tensor with R, and the Ricci
scalar with R = R, g"".

a)

Show that the current J#,

J' = K,R" (19)
is conserved V,J#* = 0. Use the relation V, R = %V”R.
Show that the following relation holds for an anti-symmetric tensor K#1#2:Fmt1
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and review Stoke’s theorem,
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where the notion 0% stands for the boundary of the surface X.

The conserved charge is then given by the following integral of the current over a
space-like slice of the space time,
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First use the relation V,V, K" = K#R,, and then Stoke’s theorem (based on equa-
tion 20) to rewite the above integral into the Komar integral,
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The later integral allows to measure charges (mass, spin) of a blackhole geometries in
the asymtotic region avoiding the event horizon as well as the curvature singularity.



