Exercise 5 Virasoro algebra

In the following two representations of the world-sheet generators of the conformal group will be compared.
a) Consider the world-sheet vector fields $\xi_{n}=i e^{i n \sigma^{+}} \partial_{+}$and show that they fulfill the classical Virasoro algebra,

$$
\begin{equation*}
\left[\xi_{n}, \xi_{m}\right]=(n-m) \xi_{m+n} \tag{1}
\end{equation*}
$$

b) Consider next the Virasoro generators,

$$
\begin{equation*}
L_{n}=-\frac{1}{2} \sum_{m=-\infty}^{\infty} \eta_{\mu \nu} \alpha_{m}^{\mu} \alpha_{n-m}^{\nu} \tag{2}
\end{equation*}
$$

Use the commutator relations,

$$
\begin{equation*}
\left[\alpha_{n}^{\mu}, \alpha_{m}^{\nu}\right]=-m \delta_{m,-n} \eta^{\mu \nu}, \quad\left[p^{\mu}, x^{\nu}\right]=-i \eta^{\mu \nu}, \quad\left[\tilde{\alpha}_{m}, \tilde{\alpha}_{n}\right]=0 \tag{3}
\end{equation*}
$$

to show that the Virasoro generators act in to following way on the mode operators α_{l}^{ρ},

$$
\begin{equation*}
\left[L_{n}, \alpha_{l}^{\rho}\right]=l \alpha_{l+n}^{\rho} . \tag{4}
\end{equation*}
$$

c) Use the commutator relation (4) to show that the operators L_{n} do in fact fulfill the Virasoro algebra,

$$
\begin{equation*}
\left[L_{n}, L_{m}\right]=(m-n) L_{m+n} \tag{5}
\end{equation*}
$$

d) Consider the mode expansion of the operators $X^{\mu}(\tau, \sigma)$,

$$
\begin{align*}
& X^{\mu}(\tau, \sigma)=X_{L}^{\mu}\left(\sigma^{+}\right)+X_{R}^{\mu}\left(\sigma^{-}\right) \tag{6}\\
& X_{L}^{\mu}\left(\sigma^{+}\right)=\frac{1}{2} x_{L}^{\mu}+\frac{\alpha_{0}^{\mu}}{\sqrt{4 \pi T}} \sigma^{+}+\frac{i}{\sqrt{4 \pi T}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n \sigma^{+}}, \tag{7}\\
& X_{R}^{\mu}\left(\sigma^{-}\right)=\frac{1}{2} x_{R}^{\mu}+\frac{\tilde{\alpha}_{0}^{\mu}}{\sqrt{4 \pi T}} \sigma^{-}+\frac{i}{\sqrt{4 \pi T}} \sum_{n \neq 0} \frac{1}{n} \tilde{\alpha}_{n}^{\mu} i e^{-i n \sigma^{-}}, \tag{8}
\end{align*}
$$

with $\sigma^{ \pm}=(\tau \pm \sigma)$ and compare the action of the vector fields ξ_{n} one the operators $X^{\mu}(\tau, \sigma)$ (acting as derivatives $\xi_{n}\left(X^{\mu}(\tau, \sigma)\right)$) with the commutators $\left[L_{n}, X^{\mu}(\tau, \sigma)\right]$.

Exercise 6 Classical string in light-cone gauge

Consider the light-cone coordinates in target space,

$$
\begin{align*}
& x^{+}=x^{0}+x^{1}, \quad x^{-}=x^{0}-x^{1}, \tag{9}\\
& d s^{2}=-\eta_{+-} d x^{+} d x^{-}+\eta_{-+} d x^{+} d x^{-}-d x^{i} d x^{i}, \quad \eta_{+-}=\eta_{-+}=-\frac{1}{2} \quad \eta 6+-=\eta^{-+}=(10)
\end{align*}
$$

such that the embedding functions $X^{\mu}(\tau, \sigma)$ are written in the form,

$$
\begin{align*}
& X^{-}(\tau, \sigma)=X^{0}(\tau, \sigma)-X^{1}(\tau, \sigma), \tag{11}\\
& X^{+}(\tau, \sigma)=X^{0}(\tau, \sigma)+X^{1}(\tau, \sigma), \tag{12}
\end{align*}
$$

and $X^{i}(\tau, \sigma)$ with $i=\{2, \ldots, D\}$. Furthermore, the reparametrization invariance on the world sheet can be used to relate the world sheet time to the light cone coordinate X^{+}, $\tau \rightarrow \frac{1}{2}\left(f^{+}\left(\sigma^{+}\right)+f^{-}\left(\sigma^{-}\right)\right)$, so that the simple form $X^{+}(\tau, \sigma)=\left(\alpha_{0}^{+}+\tilde{\alpha}_{0}^{+}\right) / \sqrt{4 \pi T} \tau$ can be obtained.

The mode expansion of the remaining fields $\mu=\{-, 2, \ldots, D\}$ is given in the standard from,

$$
\begin{align*}
& X^{\mu}(\tau, \sigma)=X_{L}^{\mu}\left(\sigma^{+}\right)+X_{R}^{\mu}\left(\sigma^{-}\right), \tag{13}\\
& X_{L}^{\mu}\left(\sigma^{+}\right)=\frac{1}{2} x_{L}^{\mu}+\frac{\alpha_{0}^{\mu}}{\sqrt{4 \pi T}} \sigma^{+}+\frac{i}{\sqrt{4 \pi T}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n \sigma^{+}}, \tag{14}\\
& X_{R}^{\mu}\left(\sigma^{-}\right)=\frac{1}{2} x_{R}^{\mu}+\frac{\tilde{\alpha}_{0}^{\mu}}{\sqrt{4 \pi T}} \sigma^{-}+\frac{i}{\sqrt{4 \pi T}} \sum_{n \neq 0} \frac{1}{n} \tilde{\alpha}_{n}^{\mu} i e^{-i n \sigma^{-}}, \tag{15}
\end{align*}
$$

with $\sigma^{ \pm}=\tau \pm \sigma$. In these coordinates the Virasoro constraints take a particularly simple form allowing to obtain explicit solutions for the classical string equations. The following steps should be a guide through the construction.
a) Compute the total momentum of the string,

$$
\begin{equation*}
p^{\mu}=T \int d \sigma \dot{X}^{\mu} \tag{16}
\end{equation*}
$$

and express the modes $\alpha_{0}^{\mu}, \tilde{\alpha}_{0}^{\mu}$ in terms of the total momenta $p^{\mu}=\left\{p^{+}, p^{-}, p^{2}, \ldots, p^{D}\right\}$.
b) Compute the Virasoro generators,

$$
\begin{equation*}
L_{n}:=T \int_{0}^{2 \pi} d \sigma T_{++} e^{i n \sigma^{+}}, \quad \tilde{L}_{n}:=T \int_{0}^{2 \pi} d \sigma T_{--} e^{i n \sigma^{-}} \tag{17}
\end{equation*}
$$

in terms of the modes $\alpha_{m}^{\mu}, \tilde{\alpha}_{m}^{\mu}$.
c) Solve the Virasoro constraints ($L_{n}=0=\tilde{L}_{n}$) under the assumption that only one frequency is excited in the 2-3 plane; $\left\{\alpha_{n}^{2}, \alpha_{n}^{3}, \tilde{\alpha}_{n}^{2}, \tilde{\alpha}_{n}^{3}\right\} \neq 0$. It is best to consider this case in the center-of-mass frame system with $x^{\mu}=p^{i}=0$.
d) The angular momentum of a closed string is given by,

$$
\begin{equation*}
J_{\mu \nu}=T \int d \sigma\left(X_{\mu} \dot{X}_{\nu}-X_{\nu} \dot{X}_{\mu}\right) \tag{18}
\end{equation*}
$$

Compute the mass $m^{2}=p^{2}$ and the angular momentum J^{23} of the string solution of the previous task. Plot the Regge trajectory $r(n):=J^{23} / m^{2}$ as a function of the mode number n. What is the slope of the Regge trajectory?

Discussion 5 Komar integral

The aim of this section is to compute conserved quantities of blackhole geometries with Killing vectors.

To this end consider a geometry with a Killing vector field K_{ν} with $\nabla_{(\mu} K_{\nu)}:=\left(\nabla_{\mu} K_{\nu}+\right.$ $\left.\nabla_{\nu} K_{\mu}\right) / 2=0$. In the following we will denote the Ricci tensor with $R_{\mu \nu}$ and the Ricci scalar with $R=R_{\mu \nu} g^{\mu \nu}$.
a) Show that the current J^{μ},

$$
\begin{equation*}
J^{\mu}=K_{\nu} R^{\mu \nu} \tag{19}
\end{equation*}
$$

is conserved $\nabla_{\mu} J^{\mu}=0$. Use the relation $\nabla_{\mu} R^{\mu \nu}=\frac{1}{2} \nabla^{\nu} R$.
b) Show that the following relation holds for an anti-symmetric tensor $K^{\mu_{1} \mu_{2} \ldots \mu_{m+1}}$,

$$
\begin{equation*}
\sqrt{g} \varepsilon_{\mu_{1} \ldots \mu_{m} \ldots \mu_{D}} \nabla_{\rho} K^{\rho \mu_{1} \mu_{2} \ldots \mu_{m}}=\partial_{\rho}\left(\sqrt{g} \varepsilon_{\mu_{1} \ldots \mu_{m} \ldots \mu_{D}} K^{\rho \mu_{1} \mu_{2} \ldots \mu_{m}}\right), \tag{20}
\end{equation*}
$$

and review Stoke's theorem,

$$
\begin{align*}
& \int_{\Sigma} \sqrt{g} \varepsilon_{\mu_{1} \ldots \mu_{m} \ldots \mu_{D}} \nabla_{\rho} K^{\rho \mu_{1} \mu_{2} \ldots \mu_{m}} \frac{d x^{\mu_{m+1}} \cdots d x^{\mu_{D}}}{(D-m)!} \tag{21}\\
& =(-1)^{m} \int_{\partial \Sigma} \sqrt{g} \varepsilon_{\mu_{1} \ldots \mu_{m} \ldots \mu_{D}} K^{\mu_{1} \mu_{2} \ldots \mu_{m} \mu_{m+1}} \frac{d x^{\mu_{m+2}} \cdots d x^{\mu_{D}}}{(D-m-1)!} \tag{22}
\end{align*}
$$

where the notion $\partial \Sigma$ stands for the boundary of the surface Σ.
c) The conserved charge is then given by the following integral of the current over a space-like slice of the space time,

$$
\begin{equation*}
Q_{K}=\frac{1}{4 \pi G_{N}} \int_{\Sigma} \sqrt{g} \varepsilon_{\mu \nu \rho \sigma} J^{\mu} \frac{d x^{\nu} d x^{\rho} d x^{\sigma}}{3!} \tag{23}
\end{equation*}
$$

First use the relation $\nabla_{\mu} \nabla_{\nu} K^{\mu}=K^{\mu} R_{\mu \nu}$ and then Stoke's theorem (based on equation 20) to rewite the above integral into the Komar integral,

$$
\begin{equation*}
Q_{K}=\frac{1}{4 \pi G_{N}} \int_{\partial \Sigma} \sqrt{g} \varepsilon_{\mu \nu \rho \sigma} \nabla^{\mu} K^{\nu} \frac{d x^{\rho} d x^{\sigma}}{2!} \tag{24}
\end{equation*}
$$

The later integral allows to measure charges (mass, spin) of a blackhole geometries in the asymtotic region avoiding the event horizon as well as the curvature singularity.

