
Exercises to General Relativity II SS 2014

Exercise 9 Normal-ordering constants.

Consider free conformal field theories in two dimension. In the quantised Virasoro algebra
normal ordering constants appear which can be computed by regularising and renormal-
ising the theory. Starting point are the (anti-) symmetrised Virasoro generators,
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of the scalars, the b-c-system, fermions and the β-γ-system. (For simplicity it is sufficient
to consider the left moving sector.) Here the labels m run over integer values from minus
infinity to plus infinity. The labels r may run over integer values (NS-sector) or half integer
values (R-sector). Note, that the modes βm and γm are bosonic, while the modes cm and
bm are fermionic.

The aim of this exercise is to compute the normal-ordering constants a(Φ) by rewriting
the Virasoro generators L0 into normal ordered form,
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with

[αµm, α
ν
n] = −mηµνδm+n,0 , {ψµm, ψνn} = ηµνδm+n,0 , (5)

[γr, βs] = δr+s,0 , {cm, bn} = δm+n,0 . (6)

Follow the following two approaches to obtain the values of the constants a(Φ).

a) The infinite sums can be interpreted by regularizing the theories,
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and subtracting the divergent parts to obtain a(Φ).

b) Use the rule,
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to rewrite the infinite sums.



The results are a(X) = −D/24, a(c) = 1/12 for the bosonic sector. They are a
(ψ)
1/2 =

−D/48, a(γ) = 1/24 for half integer modes (NS-sector) of ψ and the β−γ-system. Finally,
a(ψ) = D/24, a(γ) = −1/12 for integer modes.

Exercise 10 Towards the critical dimension of the bosonic string.

The normal ordering constants of the matter and ghost fields deform the Virasoro algebra
through constant shifts,
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which enter the Virasoro algebra like,

[Lm, Ln] = (m− n)Lm+n + Amδm+n . (10)

Compute the constants A1 and A2 from the expectation values,

Am = 〈↑ |LmL−m − 2mL0| ↓〉 . (11)

For simplicity insert the normal ordered Virasoro generators for the bosonic sector, Lm =
L

(X)
m + L

(c)
m + a(X,c)δm,0. Treat the normal ordering constant a(X,c) as an unknown in this

exercise.


