Exercise 31 One forms

Consider the following objects $d f$ on a differential manifold M, with f a C^{∞} function $M \rightarrow \mathbf{R}$. These objects are defined as forms which map vectors of the tangent space (V_{p}) to functions,

$$
\begin{align*}
& d f: V_{p} \rightarrow C_{p}^{\infty} \tag{1}\\
& d f(v):=v^{i} \partial_{i} f \tag{2}
\end{align*}
$$

and $v=v^{i} \partial_{i}$, in a local coordinate basis.
Review the vector-space axioms in general. Show that the forms give a vector space for the natural multiplcation and addition rules,

$$
\begin{equation*}
(a \omega)(v):=a \omega(v), \quad(\rho+\omega)(v):=\rho(v)+\omega(v), \quad \text { with } \quad a \in R . \tag{3}
\end{equation*}
$$

To this end verify the vector-space axioms for a fixed test-vector $v=v^{i} \partial_{i}$.
Show that for the choice of the D functions $x^{i}(P)_{i=1, D}$ we obtain a set of forms $d x^{i}$ which are dual to the vectors ∂_{i} associated to the coordinate basis. (It is recommended to consult a textbook for the derivation if needed.)

Exercise 32 Tangent vectors

Consider the following curves in a the coordinate system $\left\{x^{i}\right\}$ of three-dimensional differential manifold that pass through the point p with coordinates $x_{p}^{i}=(1,0,-1)$:

$$
\begin{aligned}
& C_{1}: x^{i}(\lambda)=\left(\lambda,(\lambda-1)^{2},-\lambda\right) \\
& C_{2}: x^{i}(\mu)=(\cos \mu, \sin \mu, \mu-1) \\
& C_{3}: x^{i}(\sigma)=\left(\sigma^{2}, \sigma^{2}+\sigma^{3}, \sigma\right)
\end{aligned}
$$

a) Calculate the components of the three tangent vectors $\frac{d}{d t}$ of these curves $\left(C_{1}, C_{2}\right.$ and $\left.C_{3}\right)$ at the point p in the coordinate basis $\left\{\partial_{i}\right\}$. Give the coordinate independent tangent vectors explicitly.
b) Consider the function $f\left(x^{i}\right)=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}-x^{2} x^{3}$. Calculate the directional derivatives of the function $f\left(x^{i}\right)$ along the three above curves and give $d f / d \lambda, d f / d \mu$ and $d f / d \sigma$.
c) Consider the same function $f\left(x^{i}\right)$ as above. This time calculate the differential $d f$: that is evaluate the components ω_{i} of the one-form $\omega=\omega_{i} d x^{i}=d f=\partial f / \partial x^{i} d x^{i}$.
d) Consider the differentials $d x^{i}$ as the dual vectors to the basis vectors ∂_{i} with $d x^{i}\left(\partial_{j}\right)=$ δ_{j}^{i}. Evaluate the one-form $d f$ on the tangent vectors to the curves C_{1}, C_{2} and C_{3}. Show that this matches the results of subtask (b).

Exercise 33 Conserved currents in gauge theories

Consider the complex valued scalar field $\phi(x)=\phi_{r}(x)+i \phi_{i}(x)$ in four dimensions with the action,

$$
\begin{equation*}
\mathcal{L}\left(\phi, A_{\mu}\right)=\left|\left(\partial_{\mu}+i e A_{\mu}\right) \phi\right|^{2}-m^{2}\left|\phi^{2}\right|+\mathcal{L}\left(A_{\mu}\right) . \tag{4}
\end{equation*}
$$

where $\mathcal{L}\left(A_{\mu}\right)=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}$.
Show that the action is invariant under the simultaneous gauge transformation of both fields, $\phi(x) \rightarrow e^{i e \alpha(x)} \phi(x)$ and $A_{\mu}(x) \rightarrow A_{\mu}(x)-\partial_{\mu} \alpha(x)$.

Show that the Lagrangian of the gauge potential $\mathcal{L}\left(A_{\mu}\right)$ is individually invariant under the above transformations. Derive the conserved current, by variing the matter action with a localised gauge parameter $\alpha(x)$ and using the equations of motion for the field ϕ.

