Übungen ART II

Exercise 4 Scalar field theory

As an attempt at a theory of gravity in terms of a scalar field $\phi(x)$ on Minkowski spacetime, consider the action of a point particle coupled to ϕ :

$$
\begin{aligned}
S & =S_{\phi}+S_{\mathrm{mat}}+S_{\mathrm{int}}, \\
S_{\phi} & =-\frac{1}{2 \kappa} \int d^{4} x \partial_{\mu} \phi(x) \partial^{\mu} \phi(x), \\
S_{\mathrm{mat}} & =m \int d \tau=m \int d \lambda \sqrt{-\frac{d x^{\mu}(\lambda)}{d \lambda} \frac{d x_{\mu}(\lambda)}{d \lambda}}, \\
S_{\mathrm{int}} & =-\int d^{4} x T_{\mathrm{mat}, \mu}^{\mu}(x) \phi(x), \\
T_{\mathrm{mat}}^{\mu \nu}(z) & =m \int \frac{d x^{\nu}(\tau)}{d \tau} \frac{d x^{\mu}(\tau)}{d \tau} \delta^{(4)}\left(z^{\rho}-x^{\rho}(\tau)\right) d \tau .
\end{aligned}
$$

Here λ is an arbitrary parametrization of the trajectory and τ is the proper time, $d \tau^{2}=$ $-\frac{d x^{\mu}(\lambda)}{d \lambda} \frac{d x_{\mu}(\lambda)}{d \lambda} d \lambda^{2}$.
a) Derive the field equation of the field ϕ. Discuss the limit of a static matter distribution, $T_{\mathrm{mat}, \mu}^{\mu}(x) \approx T_{\mathrm{mat}, 0}^{0}(\vec{x})$.
b) Show that the interaction of the field and the point particle can be written in the form

$$
S_{\mathrm{int}}=m \int d \tau \phi(x(\tau))
$$

c) Derive the equation of motion for the trajectory $x^{\mu}(\lambda)$. Show that for the choice $\lambda=\tau$ the equation can be written in the form

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} x^{\mu}=-\left(\delta_{\nu}^{\mu}+\frac{d x^{\mu}(\tau)}{d \tau} \frac{d x^{\nu}(\tau)}{d \tau}\right) \partial_{\nu} \Phi(x) \tag{1}
\end{equation*}
$$

with $\Phi(x)=\ln (1+\phi(x))$.
d) Argue that the right-hand side of eq. (1) defines a consistent Minkowski force. Why is an equation of motion of the form $\frac{d^{2}}{d \tau^{2}} x^{\mu}=-\partial^{\mu} \phi(x)$ inconsistent?

Exercise 5 Gauge fixing.

Consider the following "gauge fixed" Lagrangian for linearized gravity:

$$
\begin{align*}
\mathcal{L} & =\mathcal{L}_{\mathrm{FP}}+\mathcal{L}_{\mathrm{gf}} \tag{2}\\
\mathcal{L}_{\mathrm{FP}} & =-\frac{1}{2}\left[\partial_{\mu} h_{\nu \rho} \partial^{\mu} h^{\nu \rho}-\partial_{\mu} h \partial^{\mu} h+2 \partial_{\mu} h^{\mu \nu} \partial_{\nu} h-2 \partial_{\mu} h^{\mu \rho} \partial_{\nu} h_{\rho}^{\nu}\right]+\frac{\kappa}{2} h_{\mu \nu} T^{\mu \nu} \\
\mathcal{L}_{\mathrm{gf}} & =-\left(\partial^{\nu} h_{\mu \nu}-\frac{1}{2} \partial_{\mu} h\right)^{2}
\end{align*}
$$

a) Show that the action obtained from (2) can be written in the form

$$
S=-\frac{1}{2} \int d^{4} x M_{\mu \nu \rho \sigma} \partial^{\alpha} h^{\mu \nu} \partial_{\alpha} h^{\rho \sigma}
$$

with

$$
M_{\mu \nu \rho \sigma}=\frac{1}{2}\left(\eta_{\mu \rho} \eta_{\nu \sigma}+\eta_{\mu \sigma} \eta_{\nu \rho}-\eta_{\mu \nu} \eta_{\rho \sigma}\right)
$$

b) Show that the field equations derived from (2) reproduce the field equations in harmonic gauge,

$$
\square\left(h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h\right)=-\frac{\kappa}{2} T_{\mu \nu}
$$

c) Show that the function

$$
G^{\mu \nu \rho \sigma}\left(x-x^{\prime}\right)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{M^{\mu \nu \rho \sigma}}{p^{2}} e^{-\mathrm{i} p_{\mu}\left(x-x^{\prime}\right)^{\mu}}
$$

is a Green function for the field equations in harmonic gauge, i.e.

$$
M_{\mu \nu \rho \sigma} \square_{x} G^{\rho \sigma \alpha \beta}\left(x-x^{\prime}\right)=-\frac{1}{2}\left(\delta_{\mu}^{\alpha} \delta_{\nu}^{\beta}+\delta_{\mu}^{\beta} \delta_{\nu}^{\alpha}\right) \delta^{4}\left(x-x^{\prime}\right) .
$$

Note that the tensor on the right-hand side is the identity matrix on the space of tensors symmetric under the exchange of $\mu \leftrightarrow \nu$ and $\alpha \leftrightarrow \beta$.

