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Exercise 4 Scalar field theory

As an attempt at a theory of gravity in terms of a scalar field ¢(z) on Minkowski space-
time, consider the action of a point particle coupled to ¢:
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Here )\ is an arbitrary parametrization of the trajectory and 7 is the proper time, dr? =
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a) Derive the field equation of the field ¢. Discuss the limit of a static matter distribu-
tion, Th. . (2) = T3, o(Z).
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b) Show that the interaction of the field and the point particle can be written in the
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c¢) Derive the equation of motion for the trajectory z#(\). Show that for the choice
A = 7 the equation can be written in the form
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dr?
with ®(z) = In(1 + ¢(x)).

d) Argue that the right-hand side of eq. (1) defines a consistent Minkowski force. Why
is an equation of motion of the form dd sat = —0M¢(x) inconsistent?



Exercise 5 Gauge fixing.

Consider the following “gauge fixed” Lagrangian for linearized gravity:
L = Lyp + Ly, (2)
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a) Show that the action obtained from (2) can be written in the form
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b) Show that the field equations derived from (2) reproduce the field equations in
harmonic gauge,
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is a Green function for the field equations in harmonic gauge, i.e.
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Note that the tensor on the right-hand side is the identity matrix on the space of
tensors symmetric under the exchange of 1 <» v and a < .



