Übungen ART II

Exercise 9 Transverse-traceless projection of gravitational waves

A plane gravitational wave in harmonic gauge, $\bar{h}^{\mu \nu}(x)$, with wave-vector $k^{\mu}=k\left(1, n^{i}\right)$ can be projected on the transverse-traceless components according to

$$
h_{i j}^{T T}=\Lambda_{i j, k l}(\vec{n}) \bar{h}_{k l}=(P \bar{h} P)_{i j}-\frac{1}{2} P_{i j} \operatorname{tr} P \bar{h}
$$

with the projector

$$
\Lambda_{i j, k l}(\vec{n})=P_{i k} P_{j l}-\frac{1}{2} P_{i j} P_{k l}, \quad \text { with } \quad P_{i j}=\delta_{i j}-n_{i} n_{j} .
$$

In this exercise, upper and lower space-like indices i are not distinguished.
a) Verify that the $\Lambda_{i j, k l}$ indeed form a projector, i.e.

$$
\Lambda_{i j, k l} \Lambda_{k l, m n}=\Lambda_{i j, m n}
$$

b) Verify that the projected gravitational wave is indeed in the transverse-traceless gauge, i.e. it satisfies

$$
h_{i i}^{T T}=0, \quad k_{i} h_{i j}^{T T}=0
$$

c) The gravitational wave amplitude in the quadrupole approximation is given by

$$
h_{i j}^{T T}(t, \vec{x})=\frac{2 G}{r} \Lambda_{i j, k l}(\vec{n}) \ddot{Q}_{k l}(t-r)
$$

with $\vec{x}=r \vec{n}$. For a gravitational wave propagating along the z-direction, $\vec{n}=(0,0,1)$,

$$
h_{i j}^{T T}(t, r)=\left(h_{\times}(t, r) \epsilon_{i j, \times}+h_{+}(t, r) \epsilon_{i j,+}\right)
$$

with the polarization tensors

$$
\epsilon_{i j,+}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \quad \epsilon_{i j, \times}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

show that the amplitudes of the two polarizations are given by

$$
\begin{equation*}
h_{+}(t, r)=\frac{G}{r}\left(Q_{11}(t-r)-Q_{22}(t-r)\right), \quad h_{\times}(t, r)=\frac{2 G}{r} Q_{12}(t-r) . \tag{1}
\end{equation*}
$$

Exercise 10 Production of gravitational waves

a) Consider two non-relativistic point masses m_{1} and m_{2} at the locations $\vec{x}_{1}(t)$ and $\vec{x}_{2}(t)$. Show that the quadrupole tensor

$$
Q_{i j}(t)=\int d^{3} x \rho(t, \vec{x})\left(x_{i} x_{j}-\frac{1}{3} \delta_{i j} \vec{x}^{2}\right),
$$

where ρ is the mass density, can be written in the form

$$
Q_{i j}=M\left(X_{i} X_{j}-\frac{1}{3} \delta_{i j} \vec{X}^{2}\right)+\mu\left(x_{i} x_{j}-\frac{1}{3} \delta_{i j} \vec{x}^{2}\right)
$$

with the centre of mass and relative coordinates, $\vec{X}=\left(m_{1} \vec{x}_{1}+m_{2} \vec{x}_{2}\right) /\left(m_{1}+m_{2}\right)$ and $\vec{x}=\vec{x}_{1}-\vec{x}_{2}$, respectively. The total and reduced mass are defined by $M=m_{1}+m_{2}$ and $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$.
b) Compute the quadrupole tensor for two point masses oscillating along the x-axis with the relative coordinates $\vec{x}(t)=(L+a \cos \omega t, 0,0)$ and the centre-of-mass coordinate $\vec{X}=0$. Use Eq. (1) in exercise 9 to compute the components of the gravitational wave along the z-axis.
c) Repeat part b) for two point masses on a circular orbit in the $x-y$ plane with the relative coordinates $\vec{x}(t)=(R \sin \omega t, R \cos \omega t, 0)$ and the centre-of-mass coordinate $\vec{X}=0$.

Exercise 11 Energy-momentum tensor

Consider the action for the free electromagnetic field $\left(F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\mu} A_{\nu}\right)$.

$$
S\left(A_{\mu}, g_{\mu \nu}\right)=-\frac{1}{4} \int_{\mathbf{R}^{4}} \sqrt{-g} F_{\mu \nu} F_{\rho \sigma} g^{\mu \rho} g^{\nu \sigma} d^{4} x
$$

a) Compute the canonical energy-momentum tensor of the electromagnetic field

$$
T_{\text {can }}^{\mu \nu}=-\frac{\partial \mathcal{L}}{\partial \partial_{\mu} A_{\rho}} \partial^{\nu} A_{\rho}+g^{\mu \nu} \mathcal{L}
$$

in Minkowski space, $g^{\mu \nu}=\eta^{\mu \nu}$.
b) Compute the symmetric energy-momentum tensor according to the definition

$$
\delta_{g} S\left(A_{\mu}, g_{\mu \nu}\right)=\frac{1}{2} \int T_{\mathrm{sym}}^{\mu \nu} \delta g_{\mu \nu} \sqrt{-g} d x^{4}
$$

and let $g^{\mu \nu} \rightarrow \eta^{\mu \nu}$ subsequently. Recall the relations

$$
\delta \sqrt{-g}=\frac{1}{2} \sqrt{-g} g^{\mu \nu} \delta g_{\mu \nu}, \quad \delta g^{\mu \nu}=-g^{\mu \rho} g^{\nu \sigma} \delta g_{\rho \sigma}
$$

c) Show that the difference of the results of part a) and b) can be written in the form

$$
T_{\mathrm{sym}}^{\mu \nu}-T_{\text {can }}^{\mu \nu}=\partial_{\rho} \Sigma^{\rho \mu \nu}, \quad \text { with } \quad \Sigma^{\rho \mu \nu}=-\Sigma^{\mu \rho \nu}
$$

if the field equation $\partial_{\mu} F^{\mu \nu}=0$ is satisfied.

