Übungen ART II

Exercise 15 Graviton exchange

The scattering amplitude for a scattering process $\phi_{1}\left(p_{1}\right) \phi_{2}\left(p_{2}\right) \rightarrow \phi_{1}\left(k_{1}\right) \phi_{2}\left(k_{2}\right)$ of two distinguishable particles $\phi_{1 / 2}$ is given by

$$
\begin{equation*}
\mathrm{i} \mathcal{M}=\left(-\mathrm{i} \frac{\kappa}{2}\right)^{2} T_{\mu \nu}^{(1)}\left(p_{1}, k_{1}, q\right) D_{F}^{\mu \nu \rho \sigma}(q) T_{\rho \sigma}^{(2)}\left(p_{2}, k_{2}, q\right) \tag{1}
\end{equation*}
$$

with the momentum transfer $q=k_{1}-p_{1}=p_{2}-k_{2}$ and where $T_{\mu \nu}^{(i)}\left(p_{i}, k_{i}, q\right)$ is the Fourier transform of the energy-momentum tensor of particle ϕ_{i}. The graviton propagator is given by

$$
D_{F}^{\mu \nu \rho \sigma}(q)=\frac{-\mathrm{i}}{2} \frac{\eta^{\mu \rho} \eta^{\nu \sigma}+\eta^{\mu \sigma} \eta^{\nu \rho}-\eta^{\mu \nu} \eta^{\rho \sigma}}{q^{2}} .
$$

a) For $q^{\mu}=(\omega, 0,0, k)$, use the continuity equation for the energy-momentum tensors, $q_{\mu} T_{\nu}^{(i), \mu}\left(p_{i}, k_{i}, q\right)=0$, to eliminate the components $T_{33}^{(i)}\left(p_{i}, k_{i}, q\right)$ in the amplitude.
b) Show that the amplitude can be written in the form

$$
\mathcal{M} \sim T_{\mu \nu}^{(1)}\left(p_{1}, k_{1}, q\right) \frac{\epsilon_{+}^{\mu \nu}(q) \epsilon_{+}^{\rho \sigma}(q)+\epsilon_{\times}^{\mu \nu}(q) \epsilon_{\times}^{\rho \sigma}(q)}{k^{2}-\omega^{2}} T_{\rho \sigma}^{(2)}\left(p_{2}, k_{2}, q\right)+\ldots
$$

with the graviton polarization tensors $\epsilon^{\mu \nu}$. The terms indicated by dots do not have a pole at $\omega^{2}=k^{2}$.

Exercise 16 Gravitational interaction of photons

In this problem we will discuss scattering of two photons, $\gamma\left(p_{1}\right) \gamma\left(p_{2}\right) \rightarrow \gamma\left(k_{1}\right) \gamma\left(k_{2}\right)$ in the limit of small momentum transfer, $q^{2} \equiv\left(k_{1}-p_{1}\right)^{2} \approx 0$. The dominant contribution to the scattering amplitude in this limit is of the form of Eq. (1). The photon momenta satisfy $p_{i}^{2}=k_{i}^{2}=0$ and the photon polarization vectors are transverse, $p_{i} \cdot \epsilon\left(p_{i}\right)=0$, and $k_{i} \cdot \epsilon^{*}\left(k_{i}\right)=0$. The Fourier transform of the energy-momentum tensor of photons is given by

$$
\begin{align*}
T^{\mu \nu}(p, k, q)= & \left(k^{\mu} \epsilon^{*, \alpha}(k)-k^{\alpha} \epsilon^{*, \mu}(k)\right)\left(p^{\nu} \epsilon_{\alpha}(p)-p_{\alpha} \epsilon^{\nu}(p)\right) \\
& +\left(p^{\mu} \epsilon_{\alpha}(p)-p_{\alpha} \epsilon^{\mu}(p)\right)\left(k^{\nu} \epsilon^{*, \alpha}(k)-k^{\alpha} \epsilon^{*, \nu}(k)\right) \tag{2}\\
& -\eta^{\mu \nu}\left[(k \cdot p)\left(\epsilon^{*}(k) \cdot \epsilon(p)\right)-\left(\epsilon^{*}(k) \cdot p\right)(k \cdot \epsilon(p))\right] .
\end{align*}
$$

a) Show that the energy-momentum tensor (2) is traceless and conserved,

$$
T^{\mu}{ }_{\mu}(p, k, q)=0, \quad q_{\mu} T^{\mu \nu}(p, k, q)=0
$$

with $q=k-p$.
b) Show that the energy-momentum tensor (2) in the limit $q^{\mu} \rightarrow 0$, i.e. $p^{\mu} \sim k^{\mu}$ takes the form

$$
T^{\mu \nu}(p, k, q) \approx 2 p^{\mu} p^{\nu}(\epsilon(p) \cdot \epsilon(k))
$$

c) Compute the scattering amplitude (1) in the $q^{\mu} \rightarrow 0$ limit. Is there a gravitational attraction of two parallel light-rays $\left(\vec{p}_{1} \propto \overrightarrow{p_{2}}\right)$ and two anti-parallel light-rays ($\vec{p}_{1} \propto$ $-\vec{p}_{2}$)?

