Exercises to Relativistic Quantum Field Theory

SS 2013

Exercise 3 Momentum of the quantized free scalar field

Energy H and the momentum **P** operators of a free, real scalar field ϕ are given by

$$H = \int \frac{d^3 p}{(2\pi)^3} E_p \left\{ a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + \frac{1}{2} [a_{\mathbf{p}}, a_{\mathbf{p}}^{\dagger}] \right\}, \qquad P^i = \int \frac{d^3 p}{(2\pi)^3} p^i \left\{ a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \right\}.$$

a) Use the expressions of the energy $P^0 = H$ and the momentum operators P^i in terms of annihilation operators in order to derive the relations,

$$H^{n}a_{\mathbf{p}} = a_{\mathbf{p}}(H - E_{p})^{n}, \quad (P^{i})^{n}a_{\mathbf{p}} = a_{\mathbf{p}}(P^{i} - p^{i})^{n}$$

Derive also the analogous relations for the conjugate creation operators $a_{\mathbf{p}}^{\dagger}$.

b) Use the relations of the previous question in order to show that the field operators in distinct space-time points can be related,

$$e^{iPx}a_{\mathbf{p}}e^{-iPx} = a_{\mathbf{p}}e^{-ipx}, \quad e^{iPx}a_{\mathbf{p}}^{\dagger}e^{-iPx} = a_{\mathbf{p}}^{\dagger}e^{ipx}$$

c) Use the above relations and the explicit mode expansion of the operator ϕ to argue that,

$$\phi(\mathbf{x},t) = e^{iPx}\phi(0,0)e^{-iPx}.$$

Exercise 4 The free complex scalar field – quantization

Consider the field theory of a complex-valued scalar field obeying the Klein-Gordon equation. The action of this theory is

$$S = \int d^4x (\partial_\mu \phi \partial^\mu \phi^* - m^2 \phi \phi^*).$$

It is easiest to analyze this theory by considering ϕ and ϕ^* , rather than real and imaginary parts of ϕ , as the basic dynamical variables.

a) Find the conjugate momenta π of ϕ and π^* of ϕ^* and give the canonical commutation relations of the associated field operators $\phi, \phi^{\dagger}, \pi$ and π^{\dagger} . (It will be important below to stick to this naming convention for the conjugate momenta.) Show that the Hamiltonian of this field theory is given by,

$$H = \int d^3x (\pi \pi^{\dagger} + \partial_i \phi \partial_i \phi^{\dagger} + m^2 \phi \phi^{\dagger}).$$

b) Compute the Heisenberg equation of motion for ϕ and π^{\dagger} and show that they lead to the Klein-Gordon equation for the operator ϕ .

Exercise 5 The free complex scalar field – key operators

Consider the field operator ϕ of the free, complex Klein-Gordon field describing a spin-0 boson of mass m and electric charge q. The plane-wave expansion of ϕ is given by

$$\phi(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \left[a_{\mathbf{p}} e^{-ipx} + b_{\mathbf{p}}^{\dagger} e^{ipx} \right],$$

where $a_{\mathbf{p}}, a_{\mathbf{p}}^{\dagger}$ are the annihilation and creation operators for the particle, respectively, and likewise $b_{\mathbf{p}}, b_{\mathbf{p}}^{\dagger}$ for the corresponding anti particle. The frequencies of the modes is given by $E_p = \sqrt{\mathbf{p}^2 + m^2}$.

- a) Give the mode expansions of the operators ϕ^{\dagger} , π and π^{\dagger} . To this end use the definition of the conjugate momenta $\pi = \dot{\phi}^{\dagger}$ and $\pi^{\dagger} = \dot{\phi}$.
- b) Express the charge operator

$$Q = \int d^3x \; \frac{i}{2} \; \left[\phi \pi - \pi^{\dagger} \phi^{\dagger} \right]$$

in terms of annihilation and creation operators.

c) Express the Hamiltonian H and momentum operators P^i

$$H = \int d^3x (\pi \pi^{\dagger} + \partial_i \phi \partial_i \phi^{\dagger} + m^2 \phi \phi^{\dagger}),$$
$$P^i = -\int d^3x (\pi \partial_i \phi + \pi^{\dagger} \partial_i \phi^{\dagger})$$

in terms of creation and annihilation operators.

d) Discuss the single-particle states and show that the theory contains two sets of particles of mass m. Evaluate the charge of the particles of each type.