Quantum Field Theory II - WS16
Exercises - Set 4
Profs. H. Ita and F. Febres Cordero
Universität Freiburg

## 1 Correlation functions

Consider the scalar theory,

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)-\frac{1}{2} m^{2} \phi^{2}(x) \tag{1}
\end{equation*}
$$

Compute the two-point function $\langle 0| \phi(x) \phi(y)|0\rangle /\langle 0 \mid 0\rangle$ from the path integral. Start with the insertion of a single field and assume that the total derivative,

$$
\begin{equation*}
\int \prod_{x} d \phi(x) \frac{\delta}{\delta \phi(y)}\{f[\phi] \exp (i I[\phi])\}=0 \tag{2}
\end{equation*}
$$

vanishes.
Next consider the theory with the Lagrangian,

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)-\frac{1}{2} m^{2} \phi^{2}(x)+J(x) \phi(x), \tag{3}
\end{equation*}
$$

for which the path integral is given by,

$$
\begin{equation*}
Z[J]=\exp \left[-\frac{i}{2} \int d^{4} x d^{4} x^{\prime} J(x) \Delta\left(x-x^{\prime}\right) J\left(x^{\prime}\right)\right] Z[0] \tag{4}
\end{equation*}
$$

Compute the two-point function from functional derivatives $(\delta / \delta J(y))$ with respect to the currents. Determine the form of $\Delta\left(x-x^{\prime}\right)$ by relating it to the two point function.

## 2 BRST quantisation - Hilbert space

Consider pure QED with the gauge-fixing function,

$$
\begin{equation*}
f=\partial^{\mu} A_{\mu} \tag{5}
\end{equation*}
$$

(a) Setup the gauge fixed BRST invariant action using the auxiliary fields $\omega^{*}, \omega$ and $h$.
(b) Give the BRST transformations $\left[Q, \Phi_{A}(x)\right]_{ \pm}=i s \Phi_{A}(x)$ of the fields with $Q$ the BRST charge. Use the equations of motion for the Nakanishi-Lautrup field $h$ and give the on-shell version of the BRST transformations.
(c) Starting from the mode expansions,

$$
\begin{align*}
A^{\mu}(x) & =\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d^{3} p}{\sqrt{2 p^{0}}}\left[a^{\mu}(p) e^{-i p x}+a^{\mu *}(p) e^{i p x}\right]  \tag{6}\\
\omega(x) & =\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d^{3} p}{\sqrt{2 p^{0}}}\left[c(p) e^{-i p x}+c^{*}(p) e^{i p x}\right]  \tag{7}\\
\omega^{*}(x) & =\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d^{3} p}{\sqrt{2 p^{0}}}\left[b(p) e^{-i p x}+b^{*}(p) e^{i p x}\right] \tag{8}
\end{align*}
$$

give the transformations of the field modes $\left[Q, \alpha_{A}(p)\right]_{ \pm}$and $\left[Q, \alpha_{A}^{*}(p)\right]_{ \pm}$.
(d) Assume a BRST-invariant vacuum $Q|0\rangle=0$. Under which conditions are the states $a^{\mu *}(p) e_{\mu}|0\rangle$ physical.
(e) Show that the BRST exact state $Q b^{*}(p)|0\rangle$ corresponds to the longitudinal polarized states.
(f) Given the commutator relations $\left[a_{\mu}(p), a_{\nu}^{*}\left(p^{\prime}\right)\right]=-\eta_{\mu \nu} \delta^{3}\left(p-p^{\prime}\right)$ compute the norm of the states $a_{0}^{*}(p)|0\rangle$. Should we be worried?

## 3 Dimensional regularisation

Compute the volume of an ( $D-1$ )-dimensional sphere of unit radius by analysing the value of the Gaussian integral,

$$
\begin{equation*}
\int d^{D} x e^{-(\vec{x})^{2}} \tag{9}
\end{equation*}
$$

Compare the computation in polar coordinates to the computation with the integral being written as a product of lower-dimensional Gaussian integrals.

