Quantum Field Theory II - WS16
Due 16.12.2016
Exercises - Set 7
Profs. H. Ita and F. Febres Cordero
Universität Freiburg

1 Phase space in D dimensions

We found that the cross section for three-parton production at an $e^{+} e^{-}$machine is associated with the phase-space integral

$$
\begin{equation*}
\int d x_{1} d x_{2} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)^{\nu_{1}}\left(1-x_{2}\right)^{\nu_{2}}}, \tag{1}
\end{equation*}
$$

with $\nu_{1}=\nu_{2}=1$, potentially covering the integration region defined by the triangle in:

We want to regularize the divergences that appear at the boundaries $x_{1}=1$ and $x_{2}=1$.
(a) Assume $\nu_{1}=\nu_{2}=1-\delta$, with δ real and positive and compute the modified phase-space integral. Write down explicitly the poles in δ that you obtain for $\delta \rightarrow 0$.
(b) We will find that by keeping the dimension of space-time as a parameter $D=4-2 \epsilon$, one can achieve the previous regularization procedure. Indeed, using:

$$
\begin{equation*}
d^{(D)} \operatorname{LIPS}_{3}=\frac{2^{2 \epsilon}}{32(2 \pi)^{5-4 \epsilon}} s^{1-2 \epsilon} d \Omega_{D-2} d \Omega_{D-3} \frac{d x_{1} d x_{2}}{\left(1-x_{1}\right)^{\epsilon}\left(1-x_{2}\right)^{\epsilon}\left(x_{1}+x_{2}-1\right)^{\epsilon}} \tag{2}
\end{equation*}
$$

and the D-dimensional expression for the integrand

$$
x_{1}^{2}+x_{2}^{2} \rightarrow\left(x_{1}^{2}+x_{2}^{2}\right)(1-\epsilon)+2 \epsilon\left(x_{1}+x_{2}-1\right),
$$

compute the total real contributions to 2 -jet production at $e^{+} e^{-}$colliders.
(c) Express your result as a Laurent series around $\epsilon=0$, factoring out the constant:

$$
\begin{equation*}
\frac{\alpha_{s}}{2 \pi} \frac{\Gamma(1-\epsilon)^{2}}{\Gamma(1-3 \epsilon)}\left(\frac{s}{4 \pi \mu^{2}}\right)^{-\epsilon} \tag{3}
\end{equation*}
$$

where we have introduced the regularization scale μ^{2} in order to keep proper dimensions for the total cross section.

2 Tensor integrals for 3-point vertex

(a) Write down in full the $\mathcal{O}\left(\alpha_{s}\right)$, 1-loop integral expression for three-point vertex $\gamma^{*} \rightarrow q \bar{q}$.
(b) One of the tensor integrals that contributes to the three point vertex, has the structure:

$$
\begin{equation*}
\int \frac{d^{D} t}{(2 \pi)^{D}} \frac{t^{\mu} t^{\nu}}{t^{2}\left(t-q_{1}\right)^{2}\left(t-q_{2}\right)^{2}} \tag{4}
\end{equation*}
$$

Express this integral as a linear combination of the metric tensor and a proper tensor built up from the vectors q_{1}^{μ} and q_{2}^{μ}.
(c) Show that the previous tensor integral, when fully contracted with the metric tensor, can be expressed in terms of a lower point integral. This implies a non-trivial relation for the decomposition written in the previous item.

