Quantum Field Theory II — WS16 Due 28.10.2016
Exercises — Set 1

Profs. H. Ita and F. Febres Cordero

Universitat Freiburg

Gauge Theories — First Set of Exercises

1 Free actions

Consider the following Lagrangians,
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(a) Justify the sign and normalisation of the kinetic terms. What determines the sign of the
potential term?

(b) Show that L4 is gauge invariant.

(¢c) Compute the equations of motion from requiring that the functional derivative of the
respective actions,

0
&ﬁl({L‘)

vanishes. It is OK to compute this for a generic Lagrangian and then insert the explicit
form of the Lagrangians.

I =0, I(d)= / AL, D) (4)

(d) Compute the canonical momenta.

2 Non-abelian field strength tensor

Compute the field strength tensor Fjj, from the commutator of covariant derivatives acting on
a field vy,

([Dua Du]¢)l = _Z.F;(Lly(ta);nwm . (5)
Use the gauge transformations of the gauge potential,
SAY = e + CHE AL (6)

to obtain the transformation behavior of the field strength tensor 6Fy,.



3 Group properties

Given are the Lie-algebra generators t, of SU(3) in the form of the Gell-Mann matrices A,
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a) Compute the structure constants C from the commutators,
be
[ta,ty) = iCStc . (11)

Feel free to employ a computer algebra system (e.g. FORM, Maple, Mathematica, etc)
for this task.

(b) Write out the Jacobi identity in terms of the structure constants. Show that the adjoint
generators (t1)%,

(¢ = —iCh, (12)

fulfill the commutator relation of the Lie algebra.

(¢) Compute the functions Cy, Cr, T4 and Tr.

4 The Haar Measure for SU(2)

Compute the Haar measure of the group SU(2) with the following instructions. The group
is conveniently parametrized using the three angles 0,¢ and 1 and Lie algebra generators
proportional to the Pauli matrices,

o = 6fcos(t) sin(6), sin(w) sin(¢), cos(@)} . (13)
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With this, any element of the group g can be expressed as:

9(0,0,¢) = exp(ia’ry)
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D,

with0 <0 <27, 0<¢p<mand 0 <o < 27.

(a) Verify the relation,

1
Tr(1am) = Tpdap, Tr = 5" (16)



(b) Compute the tangent vectors at the unit point corresponding to the directions 6, ¢ and
. Give the generators 2y, t, and 2.

¢) The tangent vectors at a generic point of the group are translated back to the unit point
g g p group p
using,

— a . a a
g7 5 Lg =) itaM™, a2t ={0,9,0}, (17)

defining the matrix M (0,1, ¢).

(d) Compute the measure,

(0,1, 6) = %det(M)d@dwng). (18)
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