Quantum Field Theory II - WS16
Exercises - Set 2
Profs. H. Ita and F. Febres Cordero
Universität Freiburg

Effective actions - Second Set of Exercises

1 Grassmann integration

The left and right eigenstates of the fermionic coordinates Q_{a} are given by,

$$
\begin{align*}
|q\rangle & =\exp \left[-i \sum_{a} P_{a} q_{a}\right]|0\rangle \tag{1}\\
\langle q| & =\langle 0| \prod_{b} Q_{b} \exp \left[-i \sum_{a} q_{a} P_{a}\right] \tag{2}
\end{align*}
$$

(a) Show that the above states do in fact fulfill the eigenvalue equations,

$$
\begin{equation*}
Q_{a}|q\rangle=q_{a}|q\rangle, \quad\langle q| Q_{a}=\langle q| q_{a} \tag{3}
\end{equation*}
$$

(b) Show that the scalar product of two states with distinct eigenvalues takes the following form,

$$
\begin{equation*}
\left\langle q^{\prime} \mid q\right\rangle=\prod_{a}\left(q_{a}-q_{a}^{\prime}\right) \tag{4}
\end{equation*}
$$

(c) Show that the function,

$$
\begin{equation*}
\tilde{\delta}\left(q-q^{\prime}\right):=\prod_{a}\left(q_{a}-q_{a}^{\prime}\right) \tag{5}
\end{equation*}
$$

acts as a Grassmannian δ-function fulfilling the relation,

$$
\begin{equation*}
f\left(q^{\prime}\right)=\int \prod_{b} d q_{b} \prod_{a}\left(q_{a}-q_{a}^{\prime}\right) f(q) \tag{6}
\end{equation*}
$$

Remark: use the identity $f(q)=f\left(q^{\prime}+\left(q-q^{\prime}\right)\right)$ to evaluate the surviving terms in the integrand. Do you obtain the same result when using $\tilde{\delta}\left(q^{\prime}-q\right)$?

2 Gaussian integrals

Consider the (bosonic) Gaussian integral,

$$
\begin{equation*}
Z=\int \prod_{c} d q_{c} \exp [-I(q)], \quad I=\frac{1}{2} D_{a b} q_{a} q_{b}+J_{a} q_{a}+M \tag{7}
\end{equation*}
$$

with D a positive-definite symmetric matrix, and J_{a} and M real numbers. Show that this integral is given in terms of the stationary point (denoted by \bar{q}_{a}) of the function $I(q)$:

$$
\begin{equation*}
Z=\left(\operatorname{det}\left(\frac{D}{2 \pi}\right)\right)^{-1 / 2} \exp [-I(\bar{q})] \tag{8}
\end{equation*}
$$

Remark: you will have to compute the Gaussian integral. To this end shift the integration variables in order to write $I(q)$ as a perfect square. Use the fact that the matrix D being symmetric and real, can be diagonalised by $\left(L^{T} D L\right)_{a b}=\delta_{a b} d_{a}$ with $|\operatorname{det}(L)|=1$.

3 Photon Propagator

Consider the quadratic part of the gauge-fixed Yang-Mills action,

$$
\begin{equation*}
I_{0 A}=-\int d^{4} x\left[\frac{1}{4}\left(\partial_{\nu} A_{a \mu}-\partial_{\mu} A_{a \nu}\right)\left(\partial^{\nu} A^{a \mu}-\partial^{\mu} A^{a \nu}\right)+\frac{1}{2 \xi}\left(\partial_{\mu} A^{\mu a} \partial^{\nu} A_{\nu a}\right)+\epsilon \quad \text { terms }\right] . \tag{9}
\end{equation*}
$$

(a) Compute the field operator $\mathcal{D}^{\mu \nu, a b}$ using functional derivatives,

$$
\begin{equation*}
\mathcal{D}^{\mu \nu, a b}\left(x, x^{\prime}\right):=\frac{\delta}{\delta A_{a \mu}(x)} \frac{\delta}{\delta A_{b \nu}\left(x^{\prime}\right)} I_{0 A} \tag{10}
\end{equation*}
$$

(b) Give the Fourier transform of the field operator.
(c) Compute the propagator $\Delta^{\mu \nu, a b}(x, y)$,

$$
\begin{equation*}
\int d^{4} x^{\prime} \mathcal{D}^{\mu \nu, a b}\left(x, x^{\prime}\right) \Delta_{\nu \rho, b c}\left(x^{\prime}, y\right)=\delta^{4}(x-y) \delta_{\rho}^{\mu} \delta_{c}^{a} \tag{11}
\end{equation*}
$$

