Exercises - Set 11
Profs. H. Ita and F. Febres Cordero
Universität Freiburg

1 Evolution equations in Mellin moments

(a) Show that any non-singlet combination of quark distributions, like $V(x, t)=q_{i}(x, t)-$ $q_{j}(x, t)$, fulfills (at leading order):

$$
\begin{equation*}
t \frac{\partial}{\partial t} V(j, t)=\frac{\alpha_{s}(t)}{2 \pi} \gamma_{q q}^{(0)}(j) V(j, t) \tag{1}
\end{equation*}
$$

with $V(j, t)$ the Mellin transform of $V(x, t)$ and $\gamma_{q q}^{(0)}(j)$ the so called anomalous dimension.
(b) Compute $\gamma_{\{n m\}}^{(0)}(j)$ for all parton combinations $\{n m\}$, with $j>1$ an integer.
(c) The singlet distribution $\Sigma(x, t)$ is defined according to:

$$
\begin{equation*}
\Sigma(x, t)=\sum_{i}\left(q_{i}(x, t)+\bar{q}_{i}(x, t)\right) \tag{2}
\end{equation*}
$$

Show that for the second moment $(j=2), \Sigma$ and the gluon distribution evolve according to the matrix equation:

$$
t \frac{\partial}{\partial t}\binom{\Sigma(2, t)}{g(2, t)}=\frac{\alpha_{s}(t)}{2 \pi}\left(\begin{array}{rr}
-\frac{4}{3} C_{F} & \frac{1}{3} n_{f} \tag{3}\\
\frac{4}{3} C_{F} & -\frac{1}{3} n_{f}
\end{array}\right)\binom{\Sigma(2, t)}{g(2, t)} .
$$

(d) Using the last expression, show that the momentum carried by all quarks and gluons is independent of t.

2 Backward evolution kernel

Originally, in 1985, T. Söjstrand showed that backward evolution in a parton shower could be carried employing an expression for the probability of evolving backwards from $\left(t_{2}, x\right)$ to $\left(t_{1}, x\right)$ without resolvable branching:

$$
\begin{equation*}
\Pi\left(t_{1}, t_{2} ; x\right)=\exp \left(-\int_{t_{1}}^{t_{2}} \frac{d t}{t} \int \frac{d z}{z} \frac{\alpha_{s}}{2 \pi} \hat{P}(z) \frac{f(x / z, t)}{f(x, t)}\right) \tag{4}
\end{equation*}
$$

Show that this expression is equivalent to the one obtained during the lectures.

3 Gluon PDF at small x

For very small x it is possible to solve the Altarelli-Parisi (AP) equations analytically, using some physically motivated approximations. This exercise follows one from the book of Peskin and Schroeder.
(a) Show that the Q^{2} dependence of the right-hand side of the AP equations can be expressed as differential equations in the variable $\xi=\log \log \left(Q^{2} / \Lambda^{2}\right)$ with Λ the characteristic scale of QCD. The running of $\alpha_{s}\left(Q^{2}\right)$ is taken at leading order.
(b) For small x we will assume that the gluon PDF diverges as x^{-1}, and we will write:

$$
\begin{equation*}
d x f_{g}(x) \sim \frac{d x}{x} \tag{5}
\end{equation*}
$$

Considering the two approximations (1) the terms involving the gluon PDF completely dominate the right hand side of the AP equations; and (2) the function $\tilde{g}\left(x, Q^{2}\right)=$ $x f_{g}\left(x, Q^{2}\right)$ is a slowly varying function of x, show the approximate relation for small x :

$$
\begin{equation*}
\frac{\partial^{2}}{\partial w \partial \xi} \tilde{g}\left(x, Q^{2}\right)=\frac{12}{\beta_{0}} \tilde{g}(x, \xi), \tag{6}
\end{equation*}
$$

where $w=\log (1 / x)$ and $\beta_{0}=11-\frac{2}{3} n_{f}$.
(c) Show that if $w \xi \gg 1$, the previous equation has the approximate solution:

$$
\begin{equation*}
\tilde{g}\left(x, Q^{2}\right)=K\left(Q^{2}\right) \exp \left(\left[\frac{48}{\beta_{0}} w\left(\xi-\xi_{0}\right)\right]^{\frac{1}{2}}\right) \tag{7}
\end{equation*}
$$

