Quantum Field Theory II – WS16

Exercises – Set 9 Profs. H. Ita and F. Febres Cordero Universität Freiburg

1 Superficial Degree of Divergence in QED

While studying renormalized perturbation theory, we introduced the concept of superficial degree of divergence ($\omega(G)$) for a one-particle-irreducible (1PI) graph (G) in order to study UV properties of quantum field theories. We deduce now an expression for $\omega(G)$ in QED in d dimensions.

- (a) Consider a 1PI graph G in QED with L loops and I_{ψ} and I_A propagators for fermions and photons respectively. By exploring the leading UV contributions to loop-momentum integrations, find a relation for $\omega(G)$ as a function of d, L, I_{ψ} and I_A .
- (b) Show the Euler-loop equation: $L = I_{\psi} + I_A V + 1$, where V is the number of vertices in G.
- (c) Employing the number of external fermions E_{ψ} and photons E_A in G, show the relations $V = I_{\psi} + 1/2E_{\psi}$ and $V = 2I_A + E_A$.
- (d) With these relations, show that $\omega(G)$ can be written in terms of only d, V, E_{ψ} and E_A .
- (e) As a function of d, is QED renormalizable?

2 QED one-loop 1- and 3-point vertex functions

- (a) Compute the superficial degree of divergence for the 1- and 3-photon vertex functions Γ^A and Γ^{AAA} .
- (b) Show by explicit calculation, that at one loop Γ^A vanishes.
- (c) Draw the 1-loop diagrams that contribute to Γ^{AAA} , and show that they add to zero.

3 Regularized splitting functions

We computed explicitly the unregularized splitting function $\tilde{P}_{qq}(z) = C_F(1+z^2)/(1-z)$, where an explicit divergence, of soft nature, remained at z = 1. By adding the corresponding 1loop contributions this divergence cancels, such that the full result is written in terms of the regularized splitting function in 4 dimensions as $P_{qq}(z) = C_F((1+z^2)/(1-z))_+$. We have employed the plus-distribution defined as:

$$\int_0^1 dz F(z)_+ h(z) = \int_0^1 dz (F(z)h(z) - F(z)h(1)) .$$
(1)

Show that $P_{qq}(z)$ can be written as $C_F((1+z^2)(1/(1-z))_+ + 3/2\delta(1-z))$ (hint: you can use the relation $F(z)_+ = F(z) - \delta(1-z) \int_0^1 dy F(y)$).