Exercises for QFTI SS 2017

Exercise 1 Properties of the Schrödinger Equation (3 points)

a) Consider Schrödinger's equation,

$$\left(i\frac{\partial}{\partial t} + \frac{1}{2m}\left(\nabla_x\right)^2\right)\psi(t,\vec{x}) = 0.$$
(1)

Find a Lagrangian that yields Schrödinger's equation as its Euler-Lagrange equation. (Hint: Consider the real and the imaginary wave function ψ and ψ^* as independent fields.)

b) Show that the Lagrangian is invariant under the following transformation,

$$\psi \to e^{-i\alpha}\psi, \quad \psi^* \to e^{i\alpha}\psi^*,$$
 (2)

and compute the associated Noether current $\{J^t, \vec{J}\}$. What is the interpretation of the associated conserved charge?

c) Compute the energy-momentum tensor and the associated conserved charges, $\{E, \vec{P}\}$.

Exercise 2 Euler-Lagrange Equations (S) (2 points)

Derive the generalization of the Euler-Lagrange equations for general Lagrangians of the form $\mathcal{L}[\phi, \partial_{\mu}\phi, \partial_{\mu}\partial_{\nu}\phi]$.

Exercise 3 Ambiguities in the Energy-Momentum Tensor (S) (3 points)

- a) If you add a total derivative to a Lagrangian $\mathcal{L}(\phi, \partial_{\nu}\phi) \rightarrow \mathcal{L}(\phi, \partial_{\nu}\phi) + \partial_{\mu}X^{\mu}(\phi, \partial_{\nu}\phi)$, how do the equations of motion change? How does the energy-momentum tensor change?
- b) Show that the total energy $E = \int T^{00} d^3x$ is invariant under such changes.
- c) Show that $T^{\mu\nu} \neq T^{\nu\mu}$ is not symmetric for $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$. Find an X^{μ} so that $T^{\mu\nu}$ is symmetric in this case?