Exercise 4 Quantum-field commutators (2 points)

Given that one knows the quantum mechanics of the harmonic oscillator, one can already compute with quantum fields.

Consider the quantum field of the Klein-Gordon theory,

$$
\begin{equation*}
\phi(\vec{x}, 0)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{p}}}\left(a_{p} e^{i \vec{p} \vec{x}}+a_{p}^{\dagger} e^{-i \vec{p} \vec{x}}\right), \tag{1}
\end{equation*}
$$

with $\omega_{p}:=\sqrt{\vec{p}^{2}+m^{2}}$ and the commutator relations,

$$
\begin{equation*}
\left[a_{p}, a_{k}\right]=0, \quad\left[a_{p}^{\dagger}, a_{k}^{\dagger}\right]=0, \quad\left[a_{p}, a_{k}^{\dagger}\right]=(2 \pi)^{3} \delta^{3}(\vec{p}-\vec{k}) \tag{2}
\end{equation*}
$$

a) Compute the equal-time commutator relations, $[\phi(\vec{x}, 0), \phi(\vec{y}, 0)]=0$.
b) Compute the equal-time commutator relations, $[\pi(\vec{x}, 0), \phi(\vec{y}, 0)]=-i \delta^{3}(\vec{x}-\vec{y})$ with $\pi(\vec{x}, t):=\partial_{t} \phi(\vec{x}, t)$.

Exercise $5 \quad$ Yukawa potential (S) (3 points)
a) Calculate the equations of motion for the massive vector field A_{μ} from,

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} m^{2} A_{\mu} A^{\mu}-A_{\mu} J^{\mu} \tag{3}
\end{equation*}
$$

with $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$. Assume that the current is conserved and derive a constraint from the equations of motion for A_{μ}.
b) Solve the equations of motion for a current J_{μ} associated to a point charge to obtain,

$$
\begin{equation*}
A_{0}(r)=\frac{e}{4 \pi^{2} i r} \int_{-\infty}^{\infty} \frac{k d k}{k^{2}+m^{2}} e^{i k r} \tag{4}
\end{equation*}
$$

c) Evaluate the integral with contour integration to obtain an explicit form for $A_{0}(r)$. Finally take the limit of $m \rightarrow 0$ to obtain the Coulomb potential.

Exercise 6 Properties of Green's functions (5 points)

In the following consider the Greens functions of the Klein-Gordon field equation,

$$
\begin{equation*}
\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \Pi_{i}\left(x, x^{\prime}\right)=-i \delta^{4}\left(x-x^{\prime}\right) . \tag{5}
\end{equation*}
$$

a) Are the advanced $\Pi_{A}\left(x, x^{\prime}\right)$, retarded $\Pi_{R}\left(x, x^{\prime}\right)$ and Feynman $\Pi_{F}\left(x, x^{\prime}\right)$ Green's functions invariant under Lorentz transformations and translations?
b) Show that the retarded and advanced Green's functions are related under $\Pi_{R}\left(x, x^{\prime}\right)=$ $\Pi_{A}\left(x^{\prime}, x\right)$.
c) Consider the differences of the above Greens functions $\Pi_{i}-\Pi_{j}$ and represent them as contour integrals.
d) Check that the functions,

$$
\begin{equation*}
\Pi_{0}\left(x, x^{\prime}\right)=\int \frac{d^{4} k}{(2 \pi)^{4}} \delta\left(k^{2}-m^{2}\right) \tilde{\Pi}_{0}\left(\vec{k}, \operatorname{sign}\left(k_{0}\right)\right) e^{-i k\left(x-x^{\prime}\right)} \tag{6}
\end{equation*}
$$

solve the homogeneous Klein-Gordon equation for regular functions $\tilde{\Pi}_{0}$.
e) The differences of the Greens functions solve the homogeneous field equations. Find the Fourier representation (see previous question) of the respective functions.

