
Tutorial 8 — Correction

Exercise 1
We start by reviewing some results about traces of gamma functions. Show that:

1) tr[γµ1 . . . γµn ] = 0 if n is odd.

2) tr[γ5γ
µ1 . . . γµn ] = 0 if n is odd.

3) tr[γµγν ] = 4ηµν

4) tr[γ5γ
µγν ] = 0

5) tr[γµγνγλγρ] = 4(ηµνηλρ − ηµληνρ + ηµρηνλ)

6) tr[γ5γ
µγνγλγρ] = 4iεµνλρ

To show some of these results, recall that the only invariant second-rank tensor is the metric.
For 4) and 6), it is useful to check the symmetries of the expressions under the exchange of
two of the indices.

Correction of exercise 1
For simplicity, when there is no ambiguity in calculations I will use γµ → µ. For instance,

tr[γµγν ] will be written as tr[µν]

1) tr[γµ1 . . . γµn ] = 0 if n is odd.

tr[µ1 . . . µn] = tr[γ25µ1 . . . µn]

= (−1)ntr[γ5µ1 . . . µnγ5]

= −tr[µ1 . . . µnγ
2
5 ]

= −tr[µ1 . . . µn].

2) tr[γ5γ
µ1 . . . γµn ] = 0 if n is odd.

γ5 is a product of 4 γ-matrices, so this is follows from the previous result.

3) tr[γµγν ] = 4ηµν

tr[µν] =
1

2
tr[{µ, ν}] = ηµνtr[I4] = 4ηµν .

4) tr[γ5γ
µγν ] = 0

tr[γ5µν] = 2ηµνtr[γ5]− tr[γ5νµ] = −tr[γ5νµ].

tr[γ5γ
µγν ] is a rank two tensor, and must thus be proportional to the metric ηµν .

However, the metric is symmetric under µ → ν, while tr[γ5γ
µγν ] is anti-symmetric.

The only way to reconcile these two observations is for the trace to vanish.
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5) tr[γµγνγλγρ] = 4(ηµνηλρ − ηµληνρ + ηµρηνλ)

tr[µνλρ] =
1

2
(tr[µνλρ] + tr[νλρµ])

= ηµνtr[λρ] +
1

2
(tr[νµλρ] + tr[νλρµ])

= 4(ηµνηλρ + ηµρηνλ − ηµληνρ).

6) tr[γ5γ
µγνγλγρ] = 4iεµνλρ

As we did in point 4), we can check this tensor is totally anti-symmetric. It must thus
be proportional to the Levi-Civita tensor:

tr[γ5γ
µγνγλγρ] = αεµνλρ.

We can determine the value of α by setting µ = 0, ν = 1, λ = 2 and ρ = 3:

tr[γ5γ
0γ1γ2γ3] = α =⇒ itr[γ5γ5] = α =⇒ α = 4i.

Exercise 2
Using the above results, evaluate

tr
[
γµ(gV + gAγ5)(mf + i/q)γ

ν(gV + gAγ5)(mf − i/p)
]
. (1)

Correction of exercise 2
Set Aµν = tr

[
γµ(gV + gAγ5)(mf + i/q)γν(gV + gAγ5)(mf − i/p)

]
. Keeping only the terms

with an even number of γ-matrices, one finds

Aµν =g2V tr[µ/qν/p] + g2Vm
2
f tr[µν] + g2Atr[µγ5/qνγ5/p] + g2Am

2
f tr[µγ5νγ5]

+ gV gAm
2
f tr[{µ, ν}γ5]− 2gV gAtr[γ5µ/qν/p].

Using the results above, the remaining traces are

tr[µγ5νγ5] = −tr[µν] = −4ηµν

tr[µ/qν/p] = tr[µγ5/qνγ5/p] = 4(pµqν + qµpν − ηµνp · q)
tr[{µ, ν}γ5] = 0

tr[γ5µ/qν/p] = pαqβtr[γ5µβνα] = −4ipαqβε
µναβ .

Putting everything together,

Aµν = 4(g2V − g2A)m2
fη

µν + 4(g2V + g2A)(pµqν + qµpν − ηµνp · q)− 8igV gApαqβε
µναβ .
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Exercise 3
We will study the decay rate Γ(W− → e−ν̄e). This decay is controlled by the lagrangian

L = ieWW
−
µ ēγ

µ(gV + gAγ5)ν + h.c. . (2)

Show that
〈e(p)ν̄e(q)|H|W (k)〉 = −ieW εµ(k)ū(p)γµ(gV + gAγ5)v(q) . (3)

For me 6= mν 6= 0, show that∑
σ1σ2

|εµ(k)ū(p)γµ(gV + gAγ5)v(q)|2 = 4
[
memν(g2V − g2A) + (g2V + g2A)(2ε · pε · q − p · q)

]
. (4)

For W− linearly polarised in the direction ~r, working in the rest frame of W− and setting
mν = 0, show that

dΓ

d cos θ
=
e2WMW

16π
(g2V + g2A)

(
1− cos2 θ

(
1− m2

e

M2
W

))(
1− m2

e

M2
W

)2

, (5)

if θ is the angle between ~p and ~r. Finally, show that the unpolarised rate is

Γ(W− → e−ν̄e) =
e2WMW

12π
(g2V + g2A)

(
1− m2

e

M2
W

)2(
1 +

m2
e

2M2
W

)
. (6)

Correction of exercise 3
As argued in chapter 4 of the book, we start by writing

H = −L = −ieWW−
µ ēγ

µ(gV + gAγ5)ν .

We must then evaluate

M = 〈e(p, σ1), ν̄(q, σ2)|H |W (k, λ)〉
= −ieW 〈0| bep,σ1 b̄

ν
q,σ2W

−
µ ēγ

µ(gV + gAγ5)νa
∗
k,λ |0〉 .

(7)

Using

ψ(x) =
∑
σ=± 1

2

∫
d3p

2Ep(2π)3
(
u(p, σ)bp,σe

ip·x + v(p, σ)b̄∗p,σe
−ip·x)

ψ̄(x) =
∑
σ=± 1

2

∫
d3p

2Ep(2π)3
(
ū(p, σ)b∗p,σe

−ip·x + v̄(p, σ)b̄p,σe
−ip·x)

W−
µ =

∑
λ=−1,0,1

∫
d3p

2Ep(2π)3

(
εµ(k, λ)ak,λe

ik·x + h.c.
)

we see the only non-vanishing contribution in eq. (7) is the one that comes from b∗ in ψ̄ (to
match bep,σ1), b̄∗ in ψ (to match b̄νq,σ2) and ak,λ in W−

µ (to match a∗k,λ). We thus find

M = −ieW εµ(k, λ)ū(p, σ1)γ
µ(gV + gAγ5)v(q, σ2) (8)
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To evaluate the decay rate, we must first compute |M|2 =MM∗:

|M|2 =
∑
σ1,σ2

e2W εµε
∗
ν |ū(p, σ1)γ

µ(gV + gAγ5)v(q, σ2)| |ū(p, σ1)γ
ν(gV + gAγ5)v(q, σ2)|∗

It is a simple exercise (that you should try to do yourself) to find that

|ū(p, σ1)γ
ν(gV + gAγ5)v(q, σ2)|∗ = − |v̄(q, σ2)γ

ν(gV + gAγ5)u(p, σ1)| .

Then,

|M|2 =− e2W εµε∗ν
∑
σ1,σ2

|ū(p, σ1)γ
µ(gV + gAγ5)v(q, σ2)| |v̄(q, σ2)γ

ν(gV + gAγ5)u(p, σ1)|

=− e2W εµε∗ν
∑
σ1,σ2

tr [ū(p, σ1)γ
µ(gV + gAγ5)v(q, σ2)v̄(q, σ2)γ

ν(gV + gAγ5)u(p, σ1)]

=− e2W εµε∗ν
∑
σ1,σ2

tr [γµ(gV + gAγ5)v(q, σ2)v̄(q, σ2)γ
ν(gV + gAγ5)u(p, σ1)ū(p, σ1)]

We then use (see eqs. (4.16) and (4.17) of the book, but you can also try to reproduce these
results yourself)∑

σ

u(p, σ)ū(p, σ) = me − i/p ,
∑
σ

v(q, σ)v̄(q, σ) = −mν − i/q ,

to get
|M|2 = e2W tr

[
/ε(gV + gAγ5)(mν + i/q)/ε

∗(gV + gAγ5)(me − i/p)
]
.

To compute the remaining trace, we can use the result of exercise 2 and find

|M|2 = 4e2W
[
(g2V − g2A)memν + (g2V + g2A)(2ε · pε · q − p · q)

]
. (9)

We note that we are instructed to compute the decay rate in the case of a linearly polarized
W−-boson, which implies εν = ε∗ν . This means the term proportional to the Levi-Civita tensor
in the result of exercise 2 vanishes: it is the product of a symmetric and an anti-symmetric
tensor.

Before continuing with the evaluation of the decay rate of this specific process, we first
make an aside about the general structure of the decay of a massive particle of momentum
k into two massive particles of momenta pi and mass m2

i . The decay rate is related to the
squared matrix element by

dΓ =
1

2Ek
|M|2 (2π)4δ4(k − p1 − p2)

d3~p1d
3~p2

4Ep1Ep2(2π)6

We can use three of the δ-functions to integrate over one of the three-momenta, say ~p2. We
are then left to deal with the factor

2πδ(Ek − E1 − E2)
d3~p1

4Ep1Ep2(2π)3
= δ(Ek − E1 − E2)

|p1|2 d |p1| d2Ω
16π2Ep1Ep2

.
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where the conditions of the three δ-functions are implicit. To make the condition imposed
by the remaining δ-function trivial to satisfy, it is convenient to change variables from |p1| to
E1 + E2. The jacobian of this transformation is1:

d(E1 + E2)

d |p1|
=

~p1
|p1|
·
(
~p1
E1
− ~p2
E2

)
.

We thus have

d |p1| = d(E1 + E2)

(
~p1
|p1|
·
(
~p1
E1
− ~p2
E2

))−1

,

which gives

δ(Ek − E1 − E2)
|p1|2 d |p1| d2Ω
16π2Ep1Ep2

=
1

16π2
|p1|3 d2Ω

~p1 · (E2~p1 − E1~p2)
.

If we specialize this result, valid in a general reference frame, to the centre-of-mass frame of
the decaying massive particle, we have

E1 + E2 = Ek = Mk ; ~p1 = −~p2

in which case
~p1 · (E2~p1 − E1~p2) = Ek |p1|2 .

In this particular frame, the differential decay rate is then

dΓ =
1

32π2M2
k

|M|2 |p1| d(cos θ) dφ , (10)

where we recall energy-momentum conservation is implicit.

To evaluate eq. (9) in the C.M. frame of W− and with mν = 0, we recall:

~p = −~q ; q0 = |q| , p0 + q0 = MW ; ε · p = −ε · q = |p| cos θ.

We can then workout the kinematics (which you should try to do by yourself), to find

p =

(
M2
W +m2

e

2MW
,
m2
e −M2

W

2MW
, 0, 0

)
, q =

M2
W −m2

e

2MW
(1, 1, 0, 0).

With this explicit parametrisation, we can evaluate the dot products of eq. (9), and the result
can then be inserted in eq. (10). Nothing depends on the angle φ, so it can be trivially
integrated, giving a factor of 2π. We finally find

dΓ

d cos θ
=
e2WMW

16π
(g2V + g2A)

(
1− cos2 θ

(
1− m2

e

M2
W

))(
1− m2

e

M2
W

)2

. (11)

To obtain the unpolarised rate, we have two options. The first, and longest, is to average
over the polarisations of W−, as is done in chapter 4 of the book, using∑

λ=−1,0,1

εµ(k, λ)ε∗ν(k, λ) = ηµν +
kµkν
M2
W

.

1We recall that when taking the derivative of a vector w.r.t. a length, we get a vector!
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The second is simpler: having determined the linearly polarised rate, we can obtained the
unpolarised rate by integrating over the angle θ (this angle was the parameter controlling the
direction of the polarisation, by integrating over it we are averaging over all polarisations).
The angle θ varies from 0 to π, which means its cosine should be integrated from −1 to 1.
Computing this integral, we obtain

Γ(W− → e−ν̄e) =

∫ 1

−1

dΓ

d cos θ
d cos θ =

e2WMW

12π
(g2V + g2A)

(
1− m2

e

M2
W

)2(
1 +

m2
e

2M2
W

)
. (12)
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