Tutorial 2

November 2, 2015

Throughout the tutorials, we will use the conventions of The Standard Model: A Primer (Cliff Burgess and Guy Moore). In particular, we will use a diag(,,,-+++) metric, so that $x^{2}=-x_{0}^{2}+|\vec{x}|^{2}$ and $p^{2}=-m^{2}=-p_{0}^{2}+|\vec{p}|^{2}$.

The Klein-Gordon field

A scalar free field $\varphi(x)$ is described by the so-called Klein-Gordon lagrangian density:

$$
\begin{equation*}
\mathcal{L}_{K G}=-\frac{1}{2} \partial^{\mu} \varphi \partial_{\mu} \varphi-\frac{1}{2} m^{2} \varphi^{2} . \tag{1}
\end{equation*}
$$

As in Classical Mechanics, the equation of motion corresponding to a lagrangian density $\mathcal{L}\left(\varphi, \partial_{\mu} \varphi\right)$ is obtained from

$$
\begin{equation*}
\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi\right)}\right)-\frac{\partial \mathcal{L}}{\partial \varphi}=0 . \tag{2}
\end{equation*}
$$

Question 1: Show that the equation of motion for the Klein-Gordon lagrangian is

$$
\begin{equation*}
\left(\partial^{2}-m^{2}\right) \varphi=0 . \tag{3}
\end{equation*}
$$

Question 2: Show that the solution of eq. (3) for a real field $\varphi(x)=\varphi^{*}(x)$ is

$$
\begin{equation*}
\varphi(x)=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3} 2 E_{k}}\left(a_{\vec{k}} e^{i k \cdot x}+a_{\vec{k}}^{*} e^{-i k \cdot x}\right) . \tag{4}
\end{equation*}
$$

As in Classical Mechanics, we can define the conjugate momentum

$$
\begin{equation*}
\Pi(x)=\frac{\partial \mathcal{L}}{\partial \dot{\varphi}(x)}, \tag{5}
\end{equation*}
$$

in terms of which we can define a hamiltonian density

$$
\begin{equation*}
\mathcal{H}(x)=\Pi(x) \dot{\varphi}(x)-\mathcal{L}(x), \tag{6}
\end{equation*}
$$

where $\dot{\varphi}=\partial_{0}(\varphi)$.

Question 3: Use eq. (1) to show that

$$
\begin{equation*}
\Pi_{K G}(x)=\dot{\varphi}(x) \tag{7}
\end{equation*}
$$

and then

$$
\begin{equation*}
\mathcal{H}_{K G}(x)=\frac{1}{2}\left(\Pi_{K G}^{2}+(\nabla \varphi)^{2}+m^{2} \varphi^{2}\right) \tag{8}
\end{equation*}
$$

The hamiltonian is obtained from the hamiltonian density by integrating over the space

$$
\begin{equation*}
H=\int d^{3} \vec{x} \mathcal{H}(x) \tag{9}
\end{equation*}
$$

Question 4: Use eq. (4) and eq. (8) to show that

$$
\begin{equation*}
H_{K G}=\frac{1}{2} \int \frac{d^{3} \vec{k}}{(2 \pi)^{3} 2 E_{\vec{k}}} E_{\vec{k}}\left(a_{\vec{k}}^{*} a_{\vec{k}}+a_{\vec{k}} a_{\vec{k}}^{*}\right) . \tag{10}
\end{equation*}
$$

Question 5: Use the commutation relations of bosonic particles studied in the first tutorial to argue that $H_{K G}$ can be rewritten as

$$
\begin{equation*}
H_{K G}=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3} 2 E_{\vec{k}}} E_{\vec{k}} a_{\vec{k}}^{*} a_{\vec{k}}+H_{0} \tag{11}
\end{equation*}
$$

where H_{0} is an (infinite) constant quantity with no dynamic role.

Eq. (8) is called a quadratic hamiltonian (it is quadratic in the fields). A quadratic hamiltonian describe the evolution of free states, which means different states do not mix when evolving.

Question 6: Accordingly, show that

$$
\begin{equation*}
\langle\vec{q}| H_{K G}|\vec{p}\rangle=E_{p}\langle\vec{q} \mid \vec{p}\rangle \tag{12}
\end{equation*}
$$

Extra question, if the rest was very easy: As is done in the Lagrangian description of Classical Mechanics, show that eq. (2) can be obtained by solving $\delta S=0$, where S is the action, defined as

$$
\begin{equation*}
S=\int d^{4} x \mathcal{L}\left(\varphi, \partial_{\mu} \varphi\right) \tag{13}
\end{equation*}
$$

and δS is the variation of the action.

