Tutorial 3

November 9, 2015

Throughout the tutorials, we will use the conventions of The Standard Model: A Primer (Cliff Burgess and Guy Moore). In particular, we will use a $\operatorname{diag}(-,+,+,+)$ metric, so that $x^{2}=$ $-x_{0}^{2}+|\vec{x}|^{2}$ and $p^{2}=-m^{2}=-p_{0}^{2}+|\vec{p}|^{2}$.

1 Dirac and Klein-Gordon equations

The Dirac equation, the equation of motion of a free fermionic field ψ, is given by

$$
\begin{equation*}
(\not \partial+m) \psi=0 . \tag{1}
\end{equation*}
$$

We wish to show that the Dirac equation implies the Klein-Gordon equation. For this, show that by 'squaring' the Dirac equation one finds that ψ satisfies the Klein-Gordon equation

$$
\begin{equation*}
\left(\partial^{2}-m^{2}\right) \psi=0 \tag{2}
\end{equation*}
$$

Interpret this observation.

2 Solution of the Dirac equation

2.1 Solution of eq. (2)

Explain why we can write

$$
\begin{equation*}
\psi(x)=\sum_{\sigma} \int \frac{d^{3} \vec{k}}{(2 \pi)^{3} 2 E_{k}}\left(u(\vec{k}, \sigma) e^{i k \cdot x}+v(\vec{k}, \sigma) e^{-i k \cdot x}\right) . \tag{3}
\end{equation*}
$$

In this expression, what are $u(\vec{k}, \sigma)$ and $v(\vec{k}, \sigma)$? Given that $\psi(x)$ must also satisfy the Dirac equation, what constraints does this imply for $u(\vec{k}, \sigma)$ and $v(\vec{k}, \sigma)$?

2.2 Solution in the rest frame

Solve the equation

$$
\begin{equation*}
(i \not k+m) u(\vec{k}, \sigma)=0 \tag{4}
\end{equation*}
$$

in the rest frame of k, i.e., for $\vec{k}=0$

2.3 Solution in a general frame

The solution for $\vec{k} \neq 0$ can be obtained by boosting the solution obtained in the rest frame. For simplicity, we choose $\vec{k}=\left(0,0, k_{3}\right)$. Show that the solution can be written as

$$
u(\vec{k}, \sigma)=\left[\begin{array}{cc}
\left(\sqrt{E_{\vec{k}}+m}-\sqrt{E_{\vec{k}}-m} \sigma_{3}\right) & 0 \tag{5}\\
0 & \left(\sqrt{E_{\vec{k}}+m}+\sqrt{E_{\vec{k}}-m} \sigma_{3}\right)
\end{array}\right] \Xi_{\sigma},
$$

where Ξ_{σ} is the solution in the rest frame (the explicit representation of the γ^{μ} and σ_{i} can be found in Tutorial 1).

3 Charge conjugation

Let ψ be a Majorana spinor,

$$
\psi=\left[\begin{array}{c}
\xi \tag{6}\\
\epsilon \xi^{*}
\end{array}\right], \quad \text { with } \quad \epsilon=i \sigma_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

The charge conjugation is

$$
\begin{equation*}
\psi^{c} \equiv C \bar{\psi}^{T} \tag{7}
\end{equation*}
$$

where $\bar{\psi}$ is the Dirac conjugate of ψ and C is the charge conjugation matrix,

$$
C=\left[\begin{array}{cc}
-\epsilon & 0 \tag{8}\\
0 & \epsilon
\end{array}\right]
$$

Show that $\psi=\psi^{c}$.

4 Additional question

In the tutorial session, we will discuss how rotations act on the vector and the spinor representations. In particular, we will see that as expected if a vector is rotated by an angle of 2π it returns to its original position, but this is not true for a spinor. If you have finished all the questions above, try to determine what is the (non-zero) angle one must rotate a spinor by to bring it back to its original position.

