Tutorial 8 — Correction

Exercise 1
We start by reviewing some results about traces of gamma functions. Show that:

1) tr[y#t...4#*] =0 if n is odd.

2) tr[ysy#1 ... 4] =0 if n is odd.

3) tr[yH”] = 4n

4) trfysyy"] =0

5) tr[yty"y P] = At — P + o)
6) sy ytyP] = diet

To show some of these results, recall that the only invariant second-rank tensor is the metric.
For 4) and 6), it is useful to check the symmetries of the expressions under the exchange of
two of the indices.

Correction of exercise 1
For simplicity, when there is no ambiguity in calculations I will use v#* — u. For instance,
tr[y#~¥] will be written as tr[uv]

1) tr[y#t...4#»] =0 if n is odd.

trfp - ] = trVFpn - g
= (=1)"tr[yspu1 - - - piny5]
= —trfpr .. 3]
= —tr{pg ... pn].

2) tr[ysyHr...yHn] =0 if n is odd.

7° is a product of 4 y-matrices, so this is follows from the previous result.

3) tr[yF”] = 4
trlp] = Strl{n v}] = ] = A

4) tr[ysyH4¥] =0
tr[yspw] = 20" tr[ys] — tr[ysvp] = —tr[ysvpl.

tr[ysy#~¥] is a rank two tensor, and must thus be proportional to the metric n*”.
However, the metric is symmetric under p — v, while tr[y;y#+4"] is anti-symmetric.
The only way to reconcile these two observations is for the trace to vanish.



5) [y Pl = A — AP R

% (tx[uwAp] + tr[vApu))

1
= n"tr[Ap] + 5 (tr[vpAp] + trlvAou])
= A e — P,

tr[uvAp] =

6) 57y yP] = diet
As we did in point 4), we can check this tensor is totally anti-symmetric. It must thus
be proportional to the Levi-Civita tensor:
o5y ] = e,
We can determine the value of a by setting u =0, v =1, A=2 and p = 3:

tr57°7' Y = a = itrlysys] =a = a=4i.

Exercise 2
Using the above results, evaluate

tr [v*(gv + gavs)(my + i)V (9v + gays)(my — ip)] . (1)

Correction of exercise 2

Set A = tr [y*(gv + gays)(my + id)y (gv + gays)(ms — ip)]. Keeping only the terms
with an even number of y-matrices, one finds

AW =g trugup] + gvmitr(uv] + gate(pysgrysp] + gamitr(pysvys)
+ gvgamitr[{p, v}vs] — 2gvgatr[ys ugup).

Using the results above, the remaining traces are

tr[pysvys] = —tr[pw] = —4nH”

tr{ugvp] = trlpysqryspl = 4(0"¢” + ¢"'p” —1"'p - q)
tr[{u, viys] = 0

tr[yspudrp] = paqstrvspbral = —4ipaq56“”°‘5.

Putting everything together,

AP = 4(gt — gmAn™ + 4(g% + g2 P"d” + ¢"p” — "D - @) — 8igv gapagqse™ .




Exercise 3
We will study the decay rate I'(W ™~ — e~ 1.). This decay is controlled by the lagrangian

L =iewW, ey"(gv + gays)v + h.c.. (2)

Show that
(e(p)e(q)|H|W (k) = —ieweu(k)u(p)y" (gv + gavs)v(q) - (3)

For m. # m,, # 0, show that

> leu(B)a(p)y* (gv + gavs)v(@)]® = 4 [memu (g — g2) + (gt + 93)(2€ - pe-q—p-q)] . (4)

o102

For W~ linearly polarised in the direction 7, working in the rest frame of W~ and setting
m, = 0, show that

ar My, 5 ) m?2 m? \?
- 1—cos2g (1 e 1 e 5
doosf ~ 16m 9V T94) o8 M2, M2, ) (5)

if @ is the angle between p and 7. Finally, show that the unpolarised rate is

Ue) = .
€ Ve 127 gy T 3ga MI%V QMI%V
Correction of exercise 3
As argued in chapter 4 of the book, we start by writing
H=—L=—iewW, e (gv +gays)v

We must then evaluate

M = (e(p,01),7(q,02)| H|W (K, A))

. (7)
= —iew (0| b5, 5, b} -, W ey (gv + gavs)vag 5 10) .
Using
=2 / o, 27r 1 0)bpo €T+ v(p, o)y e
*:I:*
Y(z) = Z /2E ISE ,0)by, € ’p'$+6(p,a)5p,ge_ip'””)

- ik-x
W, = Z /2E e”(k,x)ame +h.c.)

A=-1,0,1

we see the only non-vanishing contribution in eq. is the one that comes from b* in ¢ (to
match b, ), b* in ¢ (to match by ,,) and ax x in W, (to match aj, ,). We thus find

P01

M = —iewe,(k, N)u(p,o1)v" (9v + gays)v(g, o2) (8)



To evaluate the decay rate, we must first compute |[M|[* = MM*:

IMPP =" epenes lulp, o107 (gv + gavs)v(g, o2)| [U(p, 017" (9v + gavs)v(q, 02)[*

01,02

It is a simple exercise (that you should try to do yourself) to find that

[u(p, o1)7" (gv + gavs)v(q, 02)|" = — (g, 02)7" (9v + ga¥s)u(p, o1)] .

Then,

IM? == efyeues Y lalp, 1) (gv + gars)v(a. o2)| [5(g, 027" (gv + gavs)ulp, o1))|

01,02

= —efyenes Y tr[alp, o)y (gv + 9475)0(q, 02)0(q, 02)7" (gv + gays)ulp, o1)]

01,02

= —efvencs Y tr [y (gv + 9a75)0(q, 02)0(q, 02)7" (9v + gas)ulp, o1)u(p, o1)]

01,02

We then use (see egs. (4.16) and (4.17) of the book, but you can also try to reproduce these
results yourself)

Zu(p, o)u(p, o) =me —ip , Zv(q, o)v(q,0) = —my, —iq,
to get
M = eyt [¢gv + 9.475) (my + i) (gv + gar5) (me — )] -

To compute the remaining trace, we can use the result of exercise 2 and find

IM|? = ded, (g8 — gh)mems + (g% + g4) (26 - pe-q —p - q)] - (9)

We note that we are instructed to compute the decay rate in the case of a linearly polarized
W~-boson, which implies €, = €. This means the term proportional to the Levi-Civita tensor
in the result of exercise 2 vanishes: it is the product of a symmetric and an anti-symmetric
tensor.

Before continuing with the evaluation of the decay rate of this specific process, we first
make an aside about the general structure of the decay of a massive particle of momentum
k into two massive particles of momenta p; and mass mf The decay rate is related to the
squared matrix element by

d3p1d3py

1 2 44
dr = —— 2464 (k — p1 — po) o DAL P2
25, M (@m)To (k= p2>4Ep1Ep2(27r)6

We can use three of the §-functions to integrate over one of the three-momenta, say pa. We
are then left to deal with the factor

d*py

Ip1|* d |p1| d*Q2
4Ep, Ep, (27)3

276(Ey — By — Ey) T
P1--—p2

=0(Ey — By — E»)



where the conditions of the three d-functions are implicit. To make the condition imposed
by the remaining d-function trivial to satisfy, it is convenient to change variables from |p1| to
FE1 + E». The jacobian of this transformation isﬂ

d(Er+Ep)  p1 (}71 ﬁz)

Ei  Es

d |P1 | \pl |
We thus have

- " . 1
b p p
d|p1| = d(E1 + E») (}71|(El1_E22>> )

p1*dlpi|d*Q 1 Ip1|* d*Q)

16m2Ep, Ep, 1672 Py - (Egpy — E1pa)’

If we specialize this result, valid in a general reference frame, to the centre-of-mass frame of
the decaying massive particle, we have

which gives

0(Ey — E1 — E»)

E\ + Ey = B, = My, ; D1 = —P2

in which case
P1 - (Baph — Erja) = Ey, [p1|?.
In this particular frame, the differential decay rate is then

1

dl = ————
32m2 M2

[M]? [pa] d(cos ) o, (10)
where we recall energy-momentum conservation is implicit.

To evaluate eq. @ in the C.M. frame of W~ and with m, = 0, we recall:
p=—q; 9 = lg| , po +qo = Mw ; €-p=—e-q=|p|cosb.

We can then workout the kinematics (which you should try to do by yourself), to find

2 2 .2 2 2 2
(Mt me My ), g= MMy ,0),
2Mw 2 My 2My
With this explicit parametrisation, we can evaluate the dot products of eq. @, and the result

can then be inserted in eq. . Nothing depends on the angle ¢, so it can be trivially
integrated, giving a factor of 2w. We finally find

at My, 5 ) m?2 m2 \?
= + 1—cos“0|1——= 1-—£ . 11
dcosf 167 (9v +92) MI%V M‘%V (11)
To obtain the unpolarised rate, we have two options. The first, and longest, is to average

over the polarisations of W~ as is done in chapter 4 of the book, using

kuky
MZ,

Z 6l.l‘(k7 )\)5;(]97 )‘) = 77;w +
A=-1,0,1

1We recall that when taking the derivative of a vector w.r.t. a length, we get a vector!



The second is simpler: having determined the linearly polarised rate, we can obtained the
unpolarised rate by integrating over the angle 6 (this angle was the parameter controlling the
direction of the polarisation, by integrating over it we are averaging over all polarisations).
The angle 6 varies from 0 to 7, which means its cosine should be integrated from —1 to 1.
Computing this integral, we obtain

L qr e2, My m2\ 2 m
r(w- D) = dcos = W 212 (1-—= 1 c ). (12
(- o em) = [t deoss = Wt @y (1- 7 ) (14 gme ) L (12



